K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

1.

Đặt \(1995^{1995}=a=a_1+a_2+a_3+...+a_n\)

Gọi \(S=a_1^3+a_2^3+...+a_n^3=a_1^3+a_2^3+...+a_n^3-a+a\)

\(S=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)+a\)

Vì mỗi dấu ngoặc đều chia hết cho 6 do là tích 3 số tự nhiên liên tiếp

\(\Rightarrow S\) chia 6 dư a

\(1995\equiv3\left(mod6\right)\Rightarrow1995^{1995}\equiv3\left(mod6\right)\)

Vậy S chia 6 dư 3

2.

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}=\left(B\left(25\right)-1\right)^{10}=B\left(25\right)+1\)

Vì 2100 chẵn nên 3 chữ số tận cùng của nó chẵn nên có thể là 126; 376; 626; 876

Lại có 2100 chia hết cho 8 => ba chữ số tận cùng chi hết cho 8

=> Ba CTSC là 376

3.

\(22^{22}+55^{55}=\left(BS7+1\right)^{22}+\left(BS7-1\right)^{55}=BS7+1+BS7-1=BS7⋮7\)

\(3^{1993}=3\cdot\left(3^3\right)^{664}=3\cdot\left(BS7-1\right)^{664}=3\left(BS7+1\right)=BS7+3\) nên chia 7 dư 3

\(1992^{1993}+1994^{1995}=\left(BS7-3\right)^{1993}+\left(BS7-1\right)^{1995}=BS7-3^{1993}+BS7-1=BS7-\left(BS7+3\right)+BS7-1=BS7-4\) chia 7 dư 3

\(3^{2^{1930}}=3^{2860}=3\cdot\left(3^3\right)^{953}=3\cdot\left(BS7-1\right)^{953}=3\left(BS7-1\right)=BS7-3\) chia 7 dư 4

4.

\(2^{1994}=2^2\cdot\left(2^3\right)^{664}=4\left(BS7+1\right)^{664}=4\left(BS7+1\right)=BS7+4\) chia 7 dư 4

\(3^{1998}+5^{1998}=\left(3^3\right)^{666}+\left(5^2\right)^{999}=\left(BS7-1\right)^{666}+\left(BS7-1\right)^{999}=BS7+1+BS7-1=BS7⋮7\)

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+99\right)^2=B^2⋮B\)

CM bằng quy nạp (có trên mạng)

2 tháng 10 2020

bạn ơi cho mình hỏi là vì sao 1995 chia 6 dư 3 thì 1995^1995 chia 6 cũng dư 3 vậy ạ? nếu đc thì bạn có thể chứng minh giúp mình t/c này với ạ

10 tháng 9 2016

có gì pm

buồn ngủ

15 tháng 6 2018

Ta thấy rằng:

1^3 + 2^3 = 1 + 8 = 9 = 3^2 = (1 + 2)^2

1^3 + 2^3 + 3^3 = 1 + 8 + 27 = 36 = 6^2 = (1 + 2 + 3)^2

1^3 + 2^3 + 3^3 + 4^3 = 1 + 8 + 27 + 64 = 100 = 10^2 = (1 + 2 + 3 + 4)^2

Vì thế ta có phát biểu:

Tổng các lập phương từ 1 đến n luôn là số chính phương và:

\(1^3+2^3+3^3+...+n^3=\left(\frac{n.\left(n+1\right)}{2}\right)^2\)

Thì áp dụng vào, ta có:

\(A=1^3+2^3+3^3+...+99^3=\left(1+2+...+98+99\right)^2⋮B\)

Vì thế, A sẽ chia hết cho B nên số dư là 0

13 tháng 8 2018

ta có 3^1998 đồng dư với 0 (mod 3) 

và 5 đồng dư với -1 (mod3) => 5^1998 đồng dư với 1 (mod 3)   ( vì 1998 chẵn)

=> 3^1998+5^1998 đồng dư với 0+1 (mod 3 ) => đồng dư với 1 ( mod3 )

    Vậy 3^1998+5^1998 chia 3 dư 1