Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
gọi thương của phép chia ax3+bx2+c cho x-2 là f(x) ta đc
ax3+bx2+c=(x-2).f(x)
Đẳng thức trên luôn đúng với mọi x
* với x=2 thì 8a+4b+c=0 (1)
gọi thương của ax3+bx2+c cho x2-1 là q(x) ta có
ax3+bx2+c=(x-1)(x+1).q(x)+2x+5
đẳng thức trên luôn đúng
* với x=1 thì a+b+c=7 (2)
* với x=-1 thì -a+b+c=3 (3)
từ (1) , (2) và (3) ta có
a=2 ,b=7 , c=-2
Em tham khảo câu c) ở linkCâu hỏi của Nguyễn Chí Nhân - Toán lớp 8 - Học toán với OnlineMath
a. Biến đổi được: (x - 3)2 = 144 = 122 = (-12)2 ↔ x - 3 = 12 hoặc x - 3 = -12 ↔ x = 15 hoặc x = -9
Vì x là số tự nhiên nên x = -9 (loại). Vậy x = 15
b. Do chia cho 2 và 5 đều dư 1 nên y = 1. Ta có A =
Vì A = chia cho 9 dư 1 → - 1 chia hết cho 9 →
↔ x + 1 + 8 + 3 + 0 chia hết cho 9 ↔ x + 3 chia hết cho 9, mà x là chữ số nên x = 6
Vậy x = 6; y = 1
c. Xét số nguyên tố p khi chia cho 3.Ta có: p = 3k + 1 hoặc p = 3k + 2 (k ∈ N*)
Nếu p = 3k + 1 thì p2 - 1 = (3k + 1)2 -1 = 9k2 + 6k chia hết cho 3
Nếu p = 3k + 2 thì p2 - 1 = (3k + 2)2 - 1 = 9k2 + 12k chia hết cho 3
Vậy p2 - 1 chia hết cho 3.