Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\) (*)
\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\) \(\left(1\right)\)
Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)
\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)
\(\Rightarrow1-x⋮d\)
\(\Rightarrow1-x+x+1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ
\(\Rightarrow d=\pm1\)
\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau
Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương
Giả sử: + \(x^2+1=m^2\)
\(\Rightarrow m^2-x^2=1\)
\(\Rightarrow x=0\)(bạn tự tính)
+\(x+1=n^2\)
\(\Rightarrow x=0\)(bạn tự tính)
Thay x=0 vào phương trình (*)=> y=-1;0
Vậy.......
a: ĐKXĐ: x>=0
b: \(\Leftrightarrow\dfrac{2\sqrt{2}-2\sqrt{2-\sqrt{x}}+\sqrt{2x}-\sqrt{x\left(2-\sqrt{x}\right)}+2\sqrt{2}+2\sqrt{2+\sqrt{x}}-\sqrt{2x}-\sqrt{x\left(2+\sqrt{x}\right)}}{2-2+\sqrt{x}}=\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}-2\sqrt{x\left(\sqrt{x}+2\right)}=\sqrt{2x}\)
\(\Leftrightarrow\sqrt{4x\left(\sqrt{x}+2\right)}=4\sqrt{2}-\sqrt{2x}\)
\(\Leftrightarrow4x\left(\sqrt{x}+2\right)=32-16\sqrt{x}+2x\)
\(\Leftrightarrow4x\sqrt{x}+8x-32+16\sqrt{x}-2x=0\)
=>\(x\in\left\{0;1.2996\right\}\)
sao ko ai tra loi het vay