K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2020

cac ban giup minh voi

20 tháng 4 2016

Từ giả thiết => có: x + y = 1 + \(\sqrt{z}\) và x.y = (1 + z) /2

Theo định lí Vi-ét => x và y là nghiệm của PT: t2 - (1 + \(\sqrt{z}\) )t + (1 + z) /2 = 0 (1)

\(\Delta=\left(1+\sqrt{z}\right)^2-4.\frac{1+z}{2}=1+2\sqrt{z}+z-2-2z=-1+2\sqrt{z}-z=-\left(1-\sqrt{z}\right)^2\)

Dễ thấy \(\Delta\)luôn \(\le\)0 => Để có nghiệm (x; y) =>  \(\Delta\)=0 => Z = 1

Với z = 1 => PT (1) có dạng: t2 - 2t + 1 = 0 <=> (t - 1)2=0

PT này cho nghiệm kép t1 = t2 = 1 => x = y = 1

Vậy tìm được Bộ ba số (x;y;z) = (1;1;1) thoả mãn đề ra.

8 tháng 12 2017

mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`

8 tháng 12 2017

x=5 y=15

8 tháng 10 2018

Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)

\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\

=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)

=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)

ÁP dụng BĐT cô si

\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)

\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)

\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)

=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)

=> MinQ=64 khi x=y=z=a/3