Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết => có: x + y = 1 + \(\sqrt{z}\) và x.y = (1 + z) /2
Theo định lí Vi-ét => x và y là nghiệm của PT: t2 - (1 + \(\sqrt{z}\) )t + (1 + z) /2 = 0 (1)
\(\Delta=\left(1+\sqrt{z}\right)^2-4.\frac{1+z}{2}=1+2\sqrt{z}+z-2-2z=-1+2\sqrt{z}-z=-\left(1-\sqrt{z}\right)^2\)
Dễ thấy \(\Delta\)luôn \(\le\)0 => Để có nghiệm (x; y) => \(\Delta\)=0 => Z = 1
Với z = 1 => PT (1) có dạng: t2 - 2t + 1 = 0 <=> (t - 1)2=0
PT này cho nghiệm kép t1 = t2 = 1 => x = y = 1
Vậy tìm được Bộ ba số (x;y;z) = (1;1;1) thoả mãn đề ra.
mk hc nghu lém mk giải ko dc nhưng cho mk xin nha mấy bn yêu mấy bn nh`
Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\
=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)
=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)
ÁP dụng BĐT cô si
\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)
\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)
\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)
=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
=> MinQ=64 khi x=y=z=a/3