Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
a, Vì BD là pg nên \(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{DC}{BC}=\dfrac{AD}{AB}=\dfrac{AC}{AB+BC}=\dfrac{15}{25}=\dfrac{3}{5}\Rightarrow DC=6cm;AD=9cm\)
b, Ta có BD là pg, mà BD vuông BE
nên BE là pg ngoài tam giác ABC
\(\dfrac{EC}{AC}=\dfrac{AB}{BC}\Rightarrow EC=\dfrac{AB.AC}{BC}=\dfrac{45}{2}cm\)
a: Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/15=CD/10
=>AD/3=CD/2=(AD+CD)/(3+2)=15/5=3
=>AD=9cm; CD=6cm
b: BE vuông góc BD
=>BE là phân giác góc ngoài tại B
=>EC/EA=BC/BA
=>EC/(EC+15)=10/15=2/3
=>3EC=2EC+30
=>EC=30cm
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA
Bạn bị nhầm ở câu tính AD.
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)