Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
a)BC2 =AB2+AC2 ( định lí Pitago)
=> BC=10
Dựa vào t/c đường phân giác ta có
AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2
=> AD= 3; DC=5
=>AD/DC= 3/5
b)có GÓC A =GOC E= 90 ĐỘ
VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)
=>TG ABD đồng dạng tam giác EBC(gg)
c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)
tao là thằn lớp 5 .thế mà tao cũng giải đc đấy . bài này là tao sản xuất có đáp án là .........
a: BC=căn 6^2+8^2=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=1
=>AD=3cm
b: Xét ΔABD vuông tại A và ΔEBC vuông tại E có
góc ABD=góc EBC
=>ΔABD đồng dạng với ΔEBC
c: ΔABD đồng dạng với ΔEBC
=>AD/EC=AB/EB
=>AD/AB=EC/EB
=>CD/BC=EC/EB
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).