K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

Gọi K là trung điểm của AD và O là trung điểm của BC

Xét ΔABC có 

P là trung điểm của AC

O là trung điểm của BC

Do đó: PO là đường trung bình của ΔABC

Suy ra: PO//AB

hay PO//CD

Xét ΔDAB có

K là trung điểm của AD

Q là trung điểm của BD

Do đó: KQ là đường trung bình của ΔDAB

Suy ra: KQ//AB

hay KQ//CD

Xét ΔBDC có 

Q là trung điểm của BD

O là trung điểm của BC

Do đó: QO là đường trung bình của ΔBDC

Suy ra: QO//DC

Ta có: QO//DC

mà PO//DC

và QO,PO có điểm chung là O

nên Q,P,O thẳng hàng

Ta có: KQ//CD

QO//CD

mà KQ và QO có điểm chung là Q

nên K,Q,O thẳng hàng

mà Q,P,O thẳng hàng

nên K,Q,P,O thẳng hàng

hay QP//DC(1)

Xét ΔEAB có

M là trung điểm của EA

N là trung điểm của EB

Do đó: MN là đường trung bình của ΔEAB

Suy ra: MN//AB

hay MN//DC(2)

Từ (1) và (2) suy ra MN//PQ

Xét tứ giác MNPQ có MN//PQ

nên MNPQ là hình thang

Bài 3: 

Xét ΔBAC có

E là trung điểm của AB

D là trung điểm của AC

Do đó: DE là đường trung bình của ΔBAC

Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\)

Hình thang EDCB có 

M là trung điểm của EB

N là trung điểm của DC

Do đó: MN là đường trung bình của hình thang EDCB

Suy ra: MN//ED//BC và \(MN=\dfrac{ED+BC}{2}\)

\(\Leftrightarrow MN=\left(\dfrac{1}{2}BC+BC\right):2=\dfrac{3}{4}BC\)

Xét ΔEBD có

M là trung điểm của EB

MI//ED

Do đó: I là trung điểm của BD

Xét ΔBED có 

M là trung điểm của EB

I là trung điểm của BD

Do đó: MI là đường trung bình của ΔBED

Suy ra: \(MI=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(1\right)\)

Xét ΔECD có 

N là trung điểm của DC

NK//ED

Do đó: K là trung điểm của EC

Xét ΔECD có 

N là trung điểm của DC

K là trung điểm của EC

Do đó: NK là đường trung bình của ΔECD

Suy ra: \(NK=\dfrac{ED}{2}=\dfrac{1}{4}BC\left(2\right)\)

Ta có: MI+IK+KN=MN

nên \(IK=\dfrac{1}{4}BC\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra MI=IK=KN

Bài 8:

a) Ta có: AD+DB=AB(D nằm giữa A và B)

AE+EC=AC(E nằm giữa A và C)

mà DB=EC(gt)

và AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

b) Xét ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(AD=AE;AB=AC\right)\)

Do đó: DE//BC(Định lí Ta lét đảo)

c) Xét tứ giác BDEC có DE//BC(cmt)

nên BDEC là hình thang có hai đáy là DE và BC(Định nghĩa hình thang)

Hình thang BDEC(DE//BC) có \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

nên BDEC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

Bài 7:

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có

AD=BC(ABCD là hình thang cân)

\(\widehat{B}=\widehat{C}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

\(\Leftrightarrow DE+EF=CF+FE\)

\(\Leftrightarrow DF=CE\)

b) Xét tứ giác ABFE có 

AE//BF(gt)

AE=BF(ΔAED=ΔBFC)

Do đó: ABFE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: AB=EF(Hai cạnh đối)

14 tháng 5 2021

16)

a) Tam giác ABC vuông tại A : \(AB^2+AC^2=BC^2\) 

BC=10 ⇒FC=10-5.2=4.8

b) Tam giác ABC và tam giác FEC có 

   C chung 

\(\dfrac{AC}{FC}=\dfrac{BC}{EC}=0.6\)

Do đó tam giác ABC đồng dạng với tam giác FEC (C-G-C)

c)⇒Góc  FEC=ABC=AEM

Tam giác MAE và tam giác MFB có

   Góc M chung 

Góc AEM = MBF (CMT)

⇒ 2 Tam giác đồng dạng (G-G)

\(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)⇒ MA.MB=MF.MB

 

14 tháng 5 2021

a) Xét \(\Delta ABC\) vuông tại A có :

             \(AB^2+AC^2=BC^2\) (Định lí Py-ta-go)

=>        \(BC^2=6^2+8^2=100\) 

=>       BC = 10 (cm)

=>   CF = BC\(-\)BF = 10 - 5,2 = 4,8 (cm)

Vậy BC = 10 cm ; CF = 4,8 cm

b) Xét \(\Delta CAB\) và \(\Delta CFE\) có

 \(\left\{{}\begin{matrix}\widehat{C}:chung\\\dfrac{CF}{CE}=\dfrac{CA}{CB}\left(\dfrac{4,8}{6}=\dfrac{8}{10}=\dfrac{4}{5}\right)\end{matrix}\right.\)

=>\(\Delta CAB\sim\Delta CFE\) (c-g-c)

Vậy \(\Delta CAB\sim\Delta CFE\)

c) Xét \(\Delta MAEvà\Delta MFB\) có

\(\left\{{}\begin{matrix}\widehat{M}:chung\\\widehat{MAE}=\widehat{MFB}=90^0\end{matrix}\right.\)

=> \(\Delta MAE\sim\Delta MFB\)  (g-g)

=> \(\dfrac{MA}{MF}=\dfrac{ME}{MB}\)

=> MA.MB = MF.ME

Vậy MA.MB = ME.MF

d) Xét \(\Delta BMF\) và \(\Delta BCA\) có

\(\left\{{}\begin{matrix}\widehat{B}:chung\\\widehat{BFM}=\widehat{BAC}=90^0\end{matrix}\right.\) 

=> \(\Delta BMF\) \(\sim\)\(\Delta BCA\) (g-g)

=> \(\dfrac{MF}{AC}=\dfrac{BF}{BA}\) 

=> MF = \(\dfrac{8.5,2}{6}\) = \(\dfrac{104}{15}\approx6,9\left(cm\right)\)

Vậy MF \(\approx6,9\left(cm\right)\) 

a) Xét ΔABC vuông tại A và ΔFEC vuông tại F có 

\(\widehat{ECF}\) chung

Do đó: ΔABC\(\sim\)ΔFEC(g-g)

Suy ra: \(\dfrac{CA}{CF}=\dfrac{CB}{CE}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CA\cdot CE=CB\cdot CF\)(Đpcm)

b) Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 1.

a. $=a^2+2.a.12+12^2=a^2+24a+144$

b. $=(3a)^2+2.3a.\frac{1}{3}+(\frac{1}{3})^2=9a^2+2a+\frac{1}{9}$

c. $=(5a^2)^2+2.5a^2.6+6^2=25a^4+60a^2+36$

d. $=\frac{1}{4}+2.\frac{1}{2}.4b+(4b)^2$

$=\frac{1}{4}+4b+16b^2$

e.

$=(a^m)^2+2.a^m.b^n+(b^n)^2$

$=a^{2m}+2a^mb^n+b^{2n}$

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Bài 2.

$(x-0,3)^2=x^2-0,6x+0,09$

$(6x-3y)^2=36x^2-36xy+9y^2$

$(5-2xy)^2=25-20xy+4x^2y^2$
$(x^4-1)^2=x^8-2x^4+1$

$(x^5-y^3)^2=x^{10}-2x^5y^3+y^6$

Bài 2: 

a: Xét ΔABC có

X là trung điểm của BC

Y là trung điểm của AB

Do đó: XY là đường trung bình

=>XY//AC và XY=AC/2=3,5(cm)

hay XZ//AC và XZ=AC

b: Xét tứ giác AZBX có 

Y là trung điểm của AB

Y là trung điểm của ZX

Do đó: AZBX là hình bình hành

mà \(\widehat{AXB}=90^0\)

nên AZBX là hình chữ nhật

d: Xét tứ giác AZXC có

XZ//AC

XZ=AC

Do đó: AZXC là hình bình hành

Bài 3:

a) Ta có: \(\left(x+10\right)^2+\left(x-10\right)^2\)

\(=x^2+20x+100+x^2-20x+100\)

\(=2x^2+200\)

b) Ta có: \(\left(x-12\right)^2+\left(x+12\right)^2\)

\(=x^2-24x+144+x^2+24x+144\)

\(=2x^2+288\)

c) Ta có: \(\left(x+7\right)^2-\left(x-7\right)^2\)

\(=\left(x+7-x+7\right)\left(x+7+x-7\right)\)

\(=14\cdot2x\)

=28x

Bài 1:

a) Ta có: \(\left(a+12\right)^2\)

\(=a^2+2\cdot a\cdot12+12^2\)

\(=a^2+24a+144\)

b) Ta có: \(\left(3a+\dfrac{1}{3}\right)^2\)

\(=\left(3a\right)^2+2\cdot3a\cdot\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2\)

\(=9a^2+2a+\dfrac{1}{9}\)

c) Ta có: \(\left(5a^2+6\right)^2\)

\(=\left(5a^2\right)^2+2\cdot5a^2\cdot6+6^2\)

\(=25a^4+60a^2+36\)

d) Ta có: \(\left(\dfrac{1}{2}+4b\right)^2\)

\(=\left(\dfrac{1}{2}\right)^2+2\cdot\dfrac{1}{2}\cdot4b+\left(4b\right)^2\)

\(=\dfrac{1}{4}+4b+16b^2\)

e) Ta có: \(\left(a^m+b^n\right)^2\)

\(=\left(a^m\right)^2+2\cdot a^m\cdot b^n+\left(b^n\right)^2\)

\(=a^{2m}+2a^mb^n+b^{2n}\)

1 tháng 10 2021

\(3,\)

Vì đa thức có nghiệm là \(\dfrac{1}{2}\) nên \(P\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\Leftrightarrow a=2\)

\(4,\)

\(a,P\left(x\right)=3-2x=0\Leftrightarrow x=\dfrac{3}{2}\)

\(b,Q\left(x\right)=x^2+2\ge2>0\)

Vậy \(Q\left(x\right)\) luôn dương hay \(Q\left(x\right)\) vô nghiệm

1 tháng 10 2021

E cảm ơn ạ