Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)\(+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)\(+\frac{1}{8}-\frac{1}{9}\)
\(=1-\frac{1}{9}\)
\(=\frac{8}{9}\)
1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=1-1/9
=8/9
https://olm.vn/hoi-dap/detail/7709875367.html
Đặt S=1/6+1/12+1/20+1/30+1/42+1/56+1/72
=> S=1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=> S=1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9
=> S=1/2-1/9
=> S=7/18
Vì 7/18<1/2
=> S<1/2
Mọi người k mik nhé, :)))
1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72
= 1/2.3 + 1/3.4 + 1/4.5 + 1/5.6 + 1/6.7 + 1/7.8 + 1/8.9
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/8-1/9
= 1/2 - 1/9
= 7/18
Bn tự so sánh vs 1/2 nha
A = \(-\dfrac{1}{20}\) + \(\dfrac{-1}{30}\) + \(\dfrac{-1}{42}\) + \(\dfrac{-1}{56}\) + \(\dfrac{-1}{72}\) + \(\dfrac{-1}{90}\)
A = - ( \(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\))
A = - ( \(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\))
A = - ( \(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\))
A = - (\(\dfrac{1}{4}-\dfrac{1}{10}\))
A = - \(\dfrac{3}{20}\)
\(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{4}-\frac{1}{10}=\frac{6}{40}\)
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{2}{x+1}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1}{2016}\)
=> x + 1 = 2016 . 2
=> x + 1 = 4032
=> x = 4031
Vậy x = 4031
\(D=\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{20}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)
\(D=\frac{1}{90}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\left(1-\frac{1}{9}\right)\)
\(D=\frac{1}{90}-\frac{8}{9}=-\frac{79}{90}\)
D=1/90 - 1/72 -1/56 - 1/42 - 1/30 - 1/20 - 1/12 - 1/6 - 1/2
D=1/90-(1/72+1/56+1/42+1/30+1/20+1/12+1/6+1/2)
D=1/90-(1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72)
D=1/90-(1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9)
D=1/90-(1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9)
D=1/90-(1/1-1/9)
D=1/90-8/9
D=(-79/90)