K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

1

Áp dụng định lí pi - ta -go , có

+)HB2+AH2=AB2

=>4+AH2=AB2(1)

+)HC2+AH2=AC2

=>64+AH2=AC2(2)

Ta có :CB=CH+HB=8+2=10 (cm) (3)

Từ 1,2 và 3 =>4+AH2+64+AH2=102=100

=>AH2.2=100-68=32

=>AH2=32:2=16=42

=>AH=4

Vậy AH = 4 cm

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

11 tháng 3 2020

a) bạn tự vẽ hình nhé

sau khi kẻ, ta có AC=AH+HC=11

mà tam giác ABH vuông tại H

=> theo định lý Pytago => AH^2+BH^2=AB^2

=>BH=căn bậc 2 của 57

cũng theo định lý Pytago

=>BC^2=HC^2+BH^2

=>BC=căn bậc 2 của 66

11 tháng 3 2020

b) bạn tự vẽ hình tiếp nha

ta có M là trung điểm của tam giác ABC => AM là đường trung tuyến của tam giác ABC vuông tại A

=>AM=MB=MC

theo định lý Pytago =>do tam giác HAM vuông tại H

=>HM^2+HA^2=AM^2

=>HM=9 => HB=MB-MH=32

=>AB^2=AH^2+HB^2 =>AB=căn bậc 2 của 2624

tương tự tính được AC=căn bậc 2 của 4100

=> AC/AB=5/4

CHÚC BẠN HỌC TỐT!!!

28 tháng 5 2021

giúp mik vs

 

28 tháng 5 2021

giúp mik vs mn

24 tháng 1 2016

áp dụng các định lý bạn nhé

4 tháng 5 2022

a) Áp dụng ĐL Pytago ta có: \(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Xét \(\Delta ABH\) và \(\Delta ADH\) có: 

\(AH\) chung

\(\widehat{AHB}=\widehat{AHD}=90^0\)

\(BH=DH\) (gt)

\(\Rightarrow\Delta ABH=\Delta ADH\left(c.g.c\right)\)

c) Do \(\Delta ABH=\Delta ADH\Rightarrow\widehat{B}=\widehat{ADH}\) mà \(\widehat{ADH}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\widehat{EDC}=\widehat{B}\)

Lại có \(BA//DK\) (do cùng vuông góc \(AC\)\(\Rightarrow\widehat{KDC}=\widehat{B}\) (đồng vị)

Xét \(\Delta DKC\) và \(\Delta DEC\) có:

\(\widehat{DKC}=\widehat{DEC}=90^0\)

\(CD\) chung

\(\widehat{KDC}=\widehat{EDC}=\widehat{B}\)

\(\Rightarrow\Delta DKC=\Delta DEC\) (ch - gn) \(\Rightarrow DE=DK\)

d) Xét tam giác \(AMC\) có: \(\left\{{}\begin{matrix}MK\perp AC\\AE\perp MC\\MK\cap AE=D\end{matrix}\right.\)

\(\Rightarrow D\) là trực tâm \(\Rightarrow MD\perp AC\) mà \(DK\perp AC\Rightarrow MD\equiv MK\)

\(\Rightarrow MK\perp AC\Rightarrow MK//AB\)

a, \(\Delta\) HBA và \(\Delta\) ABC:

^B - chung

^H = ^A= 900 => tg HBA đồng dạng ABC.

b, Vì tam giác BHA đồng dạng tg ABC:

=> \(\frac{AB}{HB}=\frac{BC}{AB}\Rightarrowđpcm\)

c, ADTC tia phân giác:

\(\Rightarrow\frac{AB}{AC}=\frac{BI}{IC}\Rightarrow\frac{BI}{AB}=\frac{IC}{AC}\)

ADTC dãy tỉ số bằng nhau 

\(\frac{BI}{AB}=\frac{IC}{AC}=\frac{BI+IC}{AB+AC}=\frac{BC}{AB+AC}=\frac{10}{6}+8=\frac{5}{7}\)

\(\Leftrightarrow\hept{\begin{cases}BI=\frac{5}{7}.6=4,3\\IC=\frac{5}{7}.8=5,7\end{cases}}\)