Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Độ dài cạnh AB: ( 49 + 7 ) : 2 = 28 (cm)
Độ dài cạnh AC: 28 - 7 = 21 (cm)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AC^2+AB^2\)
Hay \(BC^2=21^2+28^2\)
\(\Rightarrow BC^2=441+784\)
\(\Rightarrow BC^2=1225\)
\(\Rightarrow BC=35\left(cm\right)\)
Bài 2:
Áp dụng định lý Py-ta-go vào tam giác ABD vuông tại D có:
\(AB^2=AD^2+BD^2\)
\(\Rightarrow AD^2=AB^2-BD^2\)
Hay \(AD^2=17^2-15^2\)
\(\Rightarrow AD^2=289-225\)
\(\Rightarrow AD^2=64\)
\(\Rightarrow AD=8\left(cm\right)\)
Trong tam giác ABC có:
\(AD+DC=AC\)
\(\Rightarrow DC=AC-AD=17-8=9\left(cm\right)\)
Áp dụng định lý Py-ta-go vào tam giác BCD vuông tại D có:
\(BC^2=BD^2+DC^2\)
Hay \(BC^2=15^2+9^2\)
\(\Rightarrow BC^2=225+81\)
\(\Rightarrow BC^2=306\)
\(\Rightarrow BC=\sqrt{306}\approx17,5\left(cm\right)\)
1: \(AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\)
2: Vì AB<AC
nên góc C<góc B
a, Xét tam giác HAB có: AB2 = AH2 + BH2 => AB2 = 42 + 22 => AB2 = 16 + 4 = 20 => AB = \(\sqrt{20}\)
Xét tam giác HAC có: AB2 = HA2 + HC2 => AC2 = 42 + 82 => AC2 = 16 + 64 = 80 => AC = \(\sqrt{80}\)
b, Ta có: AB < AC\(\left(\sqrt{20}< \sqrt{80}\right)\)
=>\(\widehat{B}< \widehat{C}\:\)(Quan hệ giữa cạnh và góc đối diện)
Á mk nhầm nha \(\widehat{C}< \widehat{B}\)
#Hk_tốt
#Ngọc's_Ken'z
giúp mik vs
giúp mik vs mn