K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

xy-2y-3= 3x - x^2 
<=> x^2 + xy - 2y - 3x -3 =0
<=> x.(x+y) - 2.(y+x) -(x+3) =0
<=> (x+y).(x-2) - ( x-2) -5 = 0
<=> (x-2)(x+y-1) =5
rồi xét ước của 5 

17 tháng 9 2019

#) Giải :

y( x -2) + 3x - 6 = 0

y( x - 2) + 3( x - 2) = 0

( y + 3 )( x - 2) = 0

\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)

Mk cx hoq chak đâu ạ :33

17 tháng 9 2019

#) Giải :

b) xy + 3x - 2y - 7 = 0

xy + 3x - 2y - 6 = 1

x( y + 3) -2(y + 3) = 1

( x-2)( y+3) = 1

Ta có bảng sau :
x - 2                     -1                         1

y+ 3                     -1                           1

x                           1                         3

y                            -4                       -2

Vậy ( x;y) thuộc {(1;3);(-4;-2)}

Chúc bn hok tốt ạ :33

19 tháng 5 2017

x=1

y=1

hết rồi

19 tháng 5 2017

Vãi mình hỏi cách làm mà

9 tháng 8 2018

Ta có:y= \(\frac{x\left(x-2\right)\left(x+2\right)+\left(x-2\right)+3}{x-2}\) nên x-2 thuộc ước của 3. Xong thay ước 3 vào là được 

9 tháng 8 2018

biến y bạn vứt ở đâu z

17 tháng 9 2018

\(a)\)\(xy-x-y=1\)

\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)

\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)

\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)

Lập bảng : 

\(x-1\)\(1\)\(2\)\(-1\)\(-2\)
\(y-1\)\(2\)\(1\)\(-2\)\(-1\)
\(x\)\(2\)\(3\)\(0\)\(-1\)
\(y\)\(3\)\(2\)\(-1\)\(0\)

Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~ 


 

17 tháng 9 2018

\(b)\)\(xy-2x-2y=1\)

\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)

\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)

\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)

\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)

Lập bảng : 

\(x-2\)\(1\)\(5\)\(-1\)\(-5\)
\(y-2\)\(5\)\(1\)\(-5\)\(-1\)
\(x\)\(3\)\(7\)\(1\)\(-3\)
\(y\)\(7\)\(3\)\(-3\)\(1\)

Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)

Chúc bạn học tốt ~ 

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

NV
25 tháng 3 2021

\(\Leftrightarrow2x^2-x+1=xy+2y\)

\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)

Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)

Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)

\(\Rightarrow y=14\)

Vậy \(\left(x;y\right)=\left(9;14\right)\)

DD
15 tháng 7 2021

a) \(xy+3x-2y-7=0\)

\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)

\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)

mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị: 

x-21-1
y+31-1
x3-1
y-2-4

Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).

b) \(5y-2x^2-2y^2+2=0\)

\(\Leftrightarrow16x^2+16y^2-40y-16=0\)

\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)

Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.

Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)

mà \(\left(4x\right)^2⋮16\)nên ta có: 

\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)