K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

x2 - xy + 3x - y = 5

\(\Leftrightarrow\) x(x - y) + x - y + 2x = 5

\(\Leftrightarrow\) (x - y)(x + 1) + 2x + 2 = 7

\(\Leftrightarrow\) (x - y)(x + 1) + 2(x + 1) = 7

\(\Leftrightarrow\) (x - y + 2)(x + 1) = 7

Vì x, y \(\in\) Z nên (x - y + 2)(x + 1) \(\in\) Z

Xét các TH:

TH1: \(\left\{{}\begin{matrix}x-y+2=7\\x+1=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2-y=7\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\) (TM)

TH2: \(\left\{{}\begin{matrix}x-y+2=-7\\x+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-2-y+2=-7\\x=-2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\) (TM)

TH3: \(\left\{{}\begin{matrix}x-y+2=1\\x+1=7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}6-y+2=1\\x=6\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\) (TM)

TH4: \(\left\{{}\begin{matrix}x-y+2=-1\\x+1=-7\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-8-y+2=-1\\x=-8\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=-8\\y=-5\end{matrix}\right.\) (TM)

Vậy ...

Chúc bn học tốt!

17 tháng 9 2019

#) Giải :

y( x -2) + 3x - 6 = 0

y( x - 2) + 3( x - 2) = 0

( y + 3 )( x - 2) = 0

\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)

Mk cx hoq chak đâu ạ :33

17 tháng 9 2019

#) Giải :

b) xy + 3x - 2y - 7 = 0

xy + 3x - 2y - 6 = 1

x( y + 3) -2(y + 3) = 1

( x-2)( y+3) = 1

Ta có bảng sau :
x - 2                     -1                         1

y+ 3                     -1                           1

x                           1                         3

y                            -4                       -2

Vậy ( x;y) thuộc {(1;3);(-4;-2)}

Chúc bn hok tốt ạ :33

20 tháng 4 2019

\(\frac{x+y}{x^2+xy+y^2}=\frac{5}{19}\Leftrightarrow19\left(x+y\right)=5\left(x^2+xy+y^2\right)\) (*)

từ pt (*) ta thấy \(19\left(x+y\right)⋮5\) mà (19,5)=1 \(\Rightarrow x+y⋮5\Rightarrow x+y=5k\left(k\in Z\right)\)

Thay x+y=5k vào (*) ta được: \(x^2+xy+y^2=19k\) (1)

Lại có: \(x+y=5k\Leftrightarrow x^2+2xy+y^2=25k^2\) (2)

Lấy (2) - (1) ta có: \(xy=25k^2-19k\)

Xét \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\ge0\Leftrightarrow25k^2-4\left(25k^2-19k\right)\ge0\Leftrightarrow75k^2-76k\le0\)

\(\Leftrightarrow0\le k\le\frac{76}{75}\Rightarrow k\in\left\{0;1\right\}\)

-Nếu k=0 thì \(\hept{\begin{cases}x+y=0\\xy=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

-Nếu k=1 thì \(\hept{\begin{cases}x+y=5\\xy=6\end{cases}\Leftrightarrow\left(x;y\right)=\left(2;3\right);\left(3;2\right)}\)