K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

~ Bài 1:

Ta có: 1+2+...+232=\(\frac{\left(232+1\right)232}{2}\)=27028

Mà   :  1+2+...+232=2n-1

Nên     2n-1           =27028

           2n              =27029

             n              =13514,5

Vậy        n              =13514,5

~ Bài 2:

Giả sử: \(x^4+y^4=z\)        (1)

  Có:  xy=6

    => 2xy=12

Do đó: 2xyxy=12.6

      \(2x^2y^2\)=72             (2)

     Cộng (1),(2) vế theo vế:

   \(x^4+2x^2y^2+y^4=72+z\)

            \(\left(x^2+y^2\right)^2=72+z\)  

                           \(15^2=72+z\)                   

                            225   =72+z

      =>                   z      =153

            Vậy \(x^4+y^4=153\)   

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

19 tháng 7 2021

a) Áp dụng bất đẳng thức Cosi ta có :

\(x^2+1\geq 2x\\ 4y^2+1\geq 4y\\ 9z^2+1\geq 6z\)

Suy ra \(S\leq 6\)

Dấu = xảy ra khi \(x=1;y=\frac{1}{2}; z=\frac{1}{3}\)