K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

câu 1: 

100 cm

 

15 tháng 2 2017

có ai giải được ko ngày mai dự giờ rồi. bài 2

21 tháng 7 2017

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định lý Py – ta – go vào tam giác ABC vuông tại A, ta được:

B C 2 = A C + A B 2 ⇒ B C 2 = 15 2 + 20 2 ⇔ B C 2 = 25 2  ⇔ BC = 25( cm )

Đặt BD = x ⇒ DC = 25 - x

Áp dụng định lý Py 0 ta – go vào hai tam giác vuông AHB và AHC, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Trừ theo vế các đẳng thức ( 1 ) và ( 2 ) ta được:

15 2 - x 2 - 20 2 + ( 25 - x ) 2 = 0  ⇔ 50x = 450 ⇔ x = 9( cm )

Nên HC = 25 - 9 = 16( cm )

Thay x = 9 vào đẳng thức ( 1 ) ta có:  H A 2 = 15 2 - 9 2 = 122 ⇔ HA = 12( cm )

Áp dụng tính chất đường phân giác AD vào tam giác AHB, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất đường chất đường phân giác AE của tam giác ACH, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

Bài tập tổng hợp chương 3 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Bài 1:

Xét ΔABC có AD là phân giác

nen AB/BD=AC/CD

=>AB/3=AC/4

Đặt AB/3=AC/4=k

=>AB=3k; AC=4k

Ta có: \(AB^2+AC^2=BC^2\)

\(\Leftrightarrow25k^2=35^2\)

=>k2=49

=>k=7

=>AB=21cm; AC=28cm

25 tháng 2 2018

Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25 

=> AH = AB.AC/BC = 20.15/25 = 12 

Do tính chất phân giác, ta có: 
HD/DB = AH/AB= 12/15=4/5 

=> HD/DB =4/5 
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9 

Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81 
=> HB=9 => HD = 4 ( cm )

Tương tự ta cũng có:
Do tính chất phân giác, ta có: 
HE/EC = AH/AC= 12/20=3/5 

=> HE/EC =3/5 
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8 

Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256 
=> HC=16 => HE = 6 ( cm )

Vậy HD = 4 ( cm ) và HE = 6 ( cm )

6 tháng 4 2018

Ta có BC^2 = AB^2 + AC^2 = 625 => BC =25 

=> AH = AB.AC/BC = 20.15/25 = 12 

Do tính chất phân giác, ta có: 
HD/DB = AH/AB= 12/15=4/5 

=> HD/DB =4/5 
=> DB/HD =5/4 => HB/HD =9/4 => HD =4HB/9 

Mà HB^2 = AB^2 - AH^2 = 15^2 - 12^2 =81 
=> HB=9 => HD = 4 

==================== 

Tương tự 
Do tính chất phân giác, ta có: 
HE/EC = AH/AC= 12/20=3/5 

=> HE/EC =3/5 
=> EC/HE =5/3 => HC/HE =8/3 => HE =3HC/8 

Mà HC^2 = AC^2 - AH^2 = 20^2 - 12^2 =256 
=> HC=16 => HE = 6

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

30 tháng 10 2018

Áp dụng định lý Pytago vào tam giác ABC vuông tại A, ta có:

A B 2   +   A C 2   =   B C 2   ⇔ 15 2   +   20 2   =   B C 2   ⇒ B C   =   25

Ta có: S A B C = 1 2 .AB.AC = 1 2 .AH.BC  ⇒ A H = A B . A C B C = 15.20 25 = 12

Áp dụng định lý Pytago trong tam giác AHB vuông tại H, ta có:

A B 2   =   A H 2   +   H B 2 ⇔ 15 2   =   12 2   +   H B 2 ⇒   H B 2   =   81 ⇒ H B   =   9   ⇒ H C   =   B C   –   H B   =   25   –   9   =   16

Vì AE là phân giác của tam giác CAH nên:  A C A H = C E E H ⇔ A C A H = C H − H E E H

ó 20 12 = − H E H E  ó 20HE = 12(16 – HE) ó 20HE + 12HE = 12.16

ó 32HE = 192 ó HE = 6(cm)

Đáp án: B