Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(\Rightarrow\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\left(\text{Đ}PCM\right)\)
Bài 2:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
Đặt \(\dfrac{a}{c}=\dfrac{b}{d}=k\)
Xét \(k^2=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{ab}{cd}\left(\text{đ}pcm\right)\)
Bài 3:
Ta có:\(\dfrac{2}{x}=\dfrac{3}{y}\Rightarrow\dfrac{y}{3}=\dfrac{x}{2}\)
Đặt \(\dfrac{y}{3}=\dfrac{x}{2}=k\)\(\Rightarrow\)y=3k
x=2k
Lại có xy=96
\(\Rightarrow2k3k=96\)
\(\Rightarrow6k^2=96\)
\(\Rightarrow k=\pm4\)
Với \(k=4\Rightarrow\left(x;y\right)=\left(8;12\right)\)
\(k=-4\Rightarrow\left(x;y\right)=\left(-8;-12\right)\)
Vậy ta tìm được 2 cặp x;y thỏa mãn yêu cầu đề bài là:
(x;y)=(8;12)
(x;y)=(-8;-12)
a, Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}=>\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của day tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
\(=>\dfrac{a}{c}=\dfrac{3a+b}{3c+d}=>\dfrac{a}{3a+b}=\dfrac{c}{3c+d}=>\left(đpcm\right)\)
Bài 1:
Ta có:\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{3a}{3c}=\dfrac{3a+b}{3c+d}\)
⇒\(\dfrac{a}{c}=\dfrac{3a+b}{3c+d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)
Vậy từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)(ĐPCM)
1. Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
Thay vào 2 vế là sẽ CM được
1. Đặt \(\frac{a}{b}=\frac{c}{d}=k>a=bk.c=dk\)
Thay vào 2 vế để chứng minh
b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...
Bai 1:
\(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{3a+b}{3c+d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a}{c}=\frac{3a+b}{3c+d}\)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\)(Đpcm)
Bài 2:
\(\frac{2}{x}=\frac{3}{y}\)
=> \(\frac{4}{x^2}=\frac{9}{y^2}=\frac{2.3}{x.y}=\frac{6}{96}=\frac{1}{16}\)
=> \(\hept{\begin{cases}x^2=64\\y^2=144\end{cases}}\)
=> \(\hept{\begin{cases}x=8\\y=12\end{cases}}\)
Bài 1: \(\frac{a}{b}=\frac{c}{d};\)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Leftrightarrow\) \(\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{c}=\frac{b}{d}=\frac{3a+b}{3c+d}\)
\(\Rightarrow\)\(\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Leftrightarrow\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\Rightarrow\)điều phải chứng minh
Bài 2 : tìm x,y biết \(\frac{2}{x}=\frac{3}{y}\)và xy=96
\(\Leftrightarrow\) \(\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{xy}{2\times3}=\frac{96}{6}=16\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{2}=16\\\frac{y}{3}=16\end{cases}\Rightarrow\hept{\begin{cases}x=32\\y=48\end{cases}}}\)
vậy \(\hept{\begin{cases}x=32\\y=48\end{cases}}\)