K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Bn vừa đăng câu này mà 

undefined

30 tháng 10 2021

Gọi số cây lớp 7A,7B,7C ll là a,b,c(cây;a,b,c>0)

Áp dụng t.c dtsbn:

\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a-b+c}{4-6+3}=\dfrac{12}{1}=12\\ \Leftrightarrow\left\{{}\begin{matrix}a=48\\b=72\\c=36\end{matrix}\right.\)

Vậy ..

30 tháng 10 2021

Gọi số cây trồng được của lớp 7A,7B,7C là a,b,c(cây)(a,b,c∈N*)

Áp dụng t/c dtsbn:

\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)

\(\Rightarrow\left\{{}\begin{matrix}a=12.4=48\\b=12.6=72\\c=12.3=36\end{matrix}\right.\)

Vậy....

30 tháng 10 2021

Gọi số cây lớp 7A, 7B, 7C lần lượt là a,b,c(a,b,c>0)

Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}\\a+c-b=12\end{matrix}\right.\)

Áp dụng TCDTSBN ta có: 

\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)

\(\dfrac{a}{4}=12\Rightarrow a=48\\ \dfrac{b}{6}=12\Rightarrow b=72\\ \dfrac{c}{3}=12\Rightarrow c=36\)

30 tháng 10 2021

Gọi số cây xanh của 3 lớp lần lượt là : a,b,c

Ta có: \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3};a+c-b=12\)

Áp dụng tính chất dtsbn , ta có:

\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)

\(\Rightarrow\left\{{}\begin{matrix}a=48\\b=72\\c=36\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}7A:...\\7B:...\\7C:...\end{matrix}\right.\)

28 tháng 10 2021

\(\text{Gọi số cây lớp 7A; 7B; 7C trồng đc lần lượt là x; y; z}\)\(\text{Theo đề bài, ta có: }\)

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)

\(\text{Áp dụng tính chất của hai dãy tỷ số bằng nhau, ta có:}\)

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{\left(x+z\right)-y}{\left(4+3\right)-6}=\dfrac{12}{1}=12\)

\(\left\{{}\begin{matrix}\dfrac{x}{4}=12;x=12.4=48\\\dfrac{y}{6}=12;y=12.6=72\\\dfrac{z}{3}=12;z=12.3=36\end{matrix}\right.\)

\(\text{Vậy số cây của 3 lớp 7A; 7B; 7C trồng đc lần lượt là 48; 72; 36}\)

\(\text{Nếu thấy hay thì cho xin cái li.ke nha bn ôi}\)

9 tháng 5 2023

Gọi x,y,z (cây) lần lượt là số cây trồng được của ba lớp 7A, 7B và 7C ( x, y, z \(\in\) N*)
Do số cây trồng được của ba lớp 7A,7B,7C lần lượt tỉ lệ với 6 ; 4 ; 5 nên:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do tổng số cây của lớp 7B và 7C trồng được nhiều hơn của lớp 7A là 15 cây nên:
\(y+z-x=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\cdot6=30\\y=5\cdot4=20\\z=5\cdot5=25\end{matrix}\right.\)
Vậy ...
#Đạt Đang Bận Thở

Gọi số cay trồng được của lớp 7A,7B,7C lần lượt là a,b,c

Theo đề, ta có: a/6=b/4=c/5

Áp dụng tính chất của DTSBN, ta được:

a/6=b/4=c/5=(a-c)/(6-5)=15

=>a=90; b=60; c=75

4 tháng 5 2023

Gọi số cây trồng được của lớp 7A , 7B , 7C lần lượt là : \(x;y;z\)

Ta có tỉ lệ \(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}\)

Tổng số cây lớp 7B và 7C nhiều hơn lớp 7A là 15 cây

\(\Rightarrow y+z-x=15\)

Theo tính chất dãy tỉ số bằng nhau

\(\dfrac{x}{6}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{y+z-x}{4+5-6}=\dfrac{15}{3}=5\\ \Rightarrow\left\{{}\begin{matrix}x=5.6=30\\y=4.5=20\\z=5.5=25\end{matrix}\right.\)

Vậy lớp 7A trồng được 30 cây , 7B trồng được 20 cây , 7C trồng được 25 cây 

4 tháng 5 2023

Gọi ba lớp `7A;7B;7C` tham gia trồng cây lần lượt là `a,b,c` `( a,b,c ∈ N)`

Theo bài ra ta có : `a/6=b/4=c/5` và `b+c-a=15`

ADTC dãy tỉ số bằng nhau ta có :

` a/6=b/4=c/5=(b+c-a)/(4+5-6)=15/3=5`

`=>a/6=5=>a=5.6=30`

`=>b/4=5=>b=5.4=20`

`=>c/5=5=>c=5.5=25`

Vậy ba lớp `7A;7B;7C` tham gia trồng cây lần lượt được `30;20;25` ( cây ) .

Gọi số cây mà `3` lớp trồng được lần lượt là `x,y,z (x,y,z \in \text {N*})`

Vì số cây của `3` lớp lần lượt tỉ lệ với `3:4:5`

Nghĩa là: `x/3=y/4=z/5`

Số cây trồng được của lớp `7A, 7B` nhiều hơn lớp `7C` là `40` cây

`-> x+y-z=40`

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

`x/3=y/4=z/5=(x+y-z)/(3+4-5)=40/2=20`

`-> x/3=y/4=z/5=20`

`-> x=20*3=60, y=20*4=80, z=20*5=100`

Vậy, số cây của `3` lớp lần lượt là `60` cây, `80` cây, `100` cây.

7 tháng 5 2023

Gọi số cây trồng được của 3 lớp 7A,7B,7C lần lượt là \(x,y,z\)(cây)                                                                            \((x,y,z \in N*)\)

Do số cây trồng được của 3 lớp 7A,7B,7C lần lượt tỉ lệ với 3,4,5 nên:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)

Do số cây trồng được của 2 lớp 7A,7B nhiều hơn số cây trồng được của lớp 7C là 40 cây nên \(x+y-z=40\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{40}{2}=20\)

Do đó:

\(\dfrac{x}{30}=20\Rightarrow x=60\)

\(\dfrac{y}{4}=20\Rightarrow y=80\)                    \(\left(TM\right)\)

\(\dfrac{z}{5}=20\Rightarrow z=100\)

8 tháng 10 2021

Gọi số cây trồng được của 3 lớp 7A,7B,7C lần lượt là x,y,z(cây)(x,y,z\(\varepsilon\)\(ℕ^∗\))

Theo bài ra, ta có :

\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{6}\)và x+y-z=15

áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{x}{3}\)=\(\frac{y}{4}\)=\(\frac{z}{6}\)=\(\frac{x+y-z}{3+4-6}\)=\(\frac{15}{1}\)=15

Nếu \(\frac{x}{3}\)=15\(\Rightarrow\)x=15*3=45

       \(\frac{y}{4}\)=15\(\Rightarrow\)y=15*4=60

        \(\frac{z}{6}\)=15\(\Rightarrow\)z=15*6=80

Vậy lớp 7A trồng được 45 cây,7B trồng được 60 cây,7C trồng được 80 cây

* là nhân nhé

Gọi số cây của ba lớp 7A ; 7B ; 7C lần lượt là a ; b và c ( cây ) ( a , b , c ∈ N* )

Theo bài ra , ta có :

b + c - a = 15

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{5}=\frac{b+c-a}{4+5-6}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}a=5.6=30\\b=5.4=20\\c=5.5=25\end{cases}}\)