Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
45 = 32.5
204 = 22.3.17
126 = 2.32.7
=> UCLN(a;b;c) = 3
=> BCNN(a;b;c) = 22.32.5.7.17 = 21420
Câu 2:
Gọi số học sinh của lớp 6A là a
Ta có: a chia hết cho 2;3;5;8 => a thuộc BC(2;3;5;8)
2 = 2 ; 3 = 3 ; 5 = 5 ; 8 = 23
=> BCNN(2;3;5;8) = 23.3.5 = 120 ; B(120) = {0;120;240;....}
Mà 35 < a< 60 => a không có giá trị
Câu 2 :
Gọi số HS lớp 6a là a (a \(\in\) N*)
Ta có :
a chia hết cho 2;3;5;8
Mà BCNN(2;3;5;8) = 120
=> a \(\in\) B(120)
=> a \(\in\) {0; 120; 240; ...}
Do 35 < a < 60 nên không tồn tại a
Xem lại đề
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
Ta có: UCLN(a;b) = 15 => a = 15m và b = 15n (Với m ; n khác 0)
Ta lại có: BCNN(a;b) = 300
Mà: a . b = BCNN(a;b) . UCLN(a;b)
=> a . b = 300 . 15 = 4500 (*)
Ta thay a = 15m và b = 15n vào (*) ta được: 15m . 15n = 4500
=> 225 . mn = 4500 => mn = 4500 : 225 => mn = 20
Do: m và n là sso tự nhiên nên mn = 4 . 5 = 1 . 20
+) Với m = 4 và n = 5 thì a = 60 và b = 75
+) Với m = 5 và n = 4 thì a = 75 và b = 60
+) Với m = 1 và n = 20 thì a = 15 và b = 300
+) Với m = 20 và n = 1 thì a = 300 và b = 15
Ta có : ƯCLN ( a , b ) = 15 => a = 15m và b = 15n ( m ; n \(\ne\) 0 ).
Ta lại có : BCNN ( a ; b ) = 300
Mà a . b = BCNN ( a ; b ) . ƯCLN ( a ; b )
=> a . b = 300 . 15 = 4500 (*)
Thay a = 15m và b = 15n vào (*) ta được :
15m . 15n = 4500
<=> ( 15 . 15 ) mn = 4500
<=> 225mn = 4500
<=> mn = 4500 : 225
<=> mn = 20
Do m và n là số tự nhiên nên mn = 4 . 5 = 1 . 20
=> Ta có bảng :
m | 4 | 5 | 1 | 20 |
n | 5 | 4 | 20 | 1 |
a | 60 | 75 | 15 | 300 |
b | 75 | 60 | 300 | 15 |
B1
Gọi số hs lớp 6a là x
Ta có x chia hết cho 3,4,5
nên \(x\in\left\{60;120;....;900;960;1020...\right\}\)
mà x là số có 3 chữ số , lớn hơn 900
nên x=960
Vậy só học sinh lớp 6as là 960 hs
còn B2 bạn