K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

chiu roi

ban oi

tk nhe

29 tháng 5 2020

\(5x^2+x\left(5y-7\right)+5y^2-14y=0\)

\(\Delta=\left(5y-7\right)^2-4.5.\left(5y^2-14y\right)=-75y^2+210y+49\)

Để PT có nghiệm nguyên thì \(\Delta\ge0\)

từ đó tìm được các giá trị nguyên của y, rồi tìm được x

11 tháng 1 2016

\(y^2=\left(x-y\right)\left(1-x\right)\)

1-x1-1y;-y
x-yx-y=y2x-y=-y2y;-y
x022/3;0
y0;-1//1/3;-1

Vậy ( x;y) = ( 0;0) ; ( 0; -1) ; 

 

19 tháng 3 2020

ta có \(5\left(x^2+xy+y^2\right)=7\left(x+2y\right)\)

zì 5 , 7 là 2 số nguyên tố cùng nhau . Nên

\(\hept{\begin{cases}x+2y=5m\\x^2+xy+y^2=7m\end{cases}m\inℤ}\)

từ \(x+2y=5m=>5m-2y=x.\)thay zô \(x^2+xy+y^2=7m\)zà rút gọn ta được

\(\left(5m-2y\right)^2+\left(5m-2y\right)y+y^2=7m\Leftrightarrow3y^2-15my+25m^2-7m=0\left(1\right)\)

=>\(3\left(y^2-5my\right)+25m^2-7m=0=>3\left(y-\frac{5m}{2}\right)^2-\frac{75m^2}{4}=7m-25m^2\)

=>\(3\left(y-\frac{5m}{2}\right)^2=\frac{1}{4}\left(-25m^2+28m\right)\)

zì \(3\left(y-\frac{5m}{2}\right)^2\ge0\forall m,y\)

=>\(\frac{1}{4}\left(-25m^2+28m\right)\ge0\Leftrightarrow25m^2-28m\le0\Leftrightarrow m\left(m-\frac{28}{25}\right)\le0\Leftrightarrow0\le m\le\frac{28}{25}\)

mà \(m\inℤ\)nên \(m\in\left\{0,1\right\}\)

zới m=0 thay zô (1) ta được y=0. từ đó tính đc x=0

zới m =1 thây zô (1) ta được \(3y^2-15y+18=0=>y^2-5y+6=0=>\orbr{\begin{cases}y=2\\y=3\end{cases}}\)

zới y=2 , m=1 thì ta tính đc x=1

zới y=3 , m=1 thì ta tính đc x=-1

zậy \(\left(x,y\right)\in\left\{\left(0,0\right);\left(1,2\right)\left(-1,3\right)\right\}\)

27 tháng 7 2020

2(x + y) + xy = x2 + y2

<=> x2 + y2 - 2x - 2y - xy = 0

<=> 4x2 + 4y2 - 4xy - 8x - 8y = 0

<=> (4x2 - 4xy + y2) - 4(2x - y) + 4 + 3y2 - 12y + 12 - 16 = 0

<=> (2x - y)2 - 4(2x - y) + 4 + 3(y2 - 4y + 4) = 16

<=> (2x - y - 2)2 = 16 - 3(y - 2)2 (1)

Do VT = (2x - y - 2)2 \(\ge\)\(\forall\)x;y

=> VP = 16 - 3(y - 2)2 \(\ge\)

=> 3(y - 2)2 \(\le\) 16

=> (y - 2)2 \(\le\)16/3

Do y nguyên dương và (y - 2)2 là số chính phương => (y - 2)2 \(\in\){0; 1; 4}

=> y - 2 \(\in\){0; 1; -1; 2; -2}

Lập bảng:

y - 2 0 1 -1 2 -2
  y 2 3 1 4 0

Với y = 2 , khi đó pt (1) trở thành: (2x - 2 - 2)2 = 16 - 3.0

<=> (2x - 4)2 = 16

<=> \(\orbr{\begin{cases}2x-4=4\\2x-4=-4\end{cases}}\)

<=> \(\orbr{\begin{cases}x=4\\x=0\end{cases}}\)

Với y = 3 .... (tự thay vào tìm x)