K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2 

a: Xét tứ giác BGCK có

I là trung điểm chug của BC avf GK

nên BGCK là hình bình hành

b: Xét tứ giác CGAF có

E là trung điểm của CA và GF

nên CGAF là hình bình hành

Suy ra: AG//CF

c: Ta có: CG//AF

CG//KB

Do đó: AF//KB

Xét tứ giác ABKF có

KB//AF

KB=AF

Do đó: ABKF là hình binh hành

a: Xét tứ giác ABEC có 

D là trung điểm của AE

D là trung điểm của BC

Do đó: ABEC là hình bình hành

mà AB=AC

nên ABEC là hình thoi

26 tháng 12 2020

a) Xét ΔAMF có 

AE là đường cao ứng với cạnh MF(\(AE\perp MF\))

AE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔAMF cân tại A(Định lí tam giác cân)

hay AM=AF(1)

Xét ΔCFM có 

CE là đường cao ứng với cạnh MF(\(CE\perp MF\))

CE là đường trung tuyến ứng với cạnh MF(E là trung điểm của MF)

Do đó: ΔCFM cân tại C(Định lí tam giác cân)

hay CM=CF(2)

Vì ΔABC vuông tại A(gt) có AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(CM=BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=CM=BM(3)

Từ (1), (2) và (3) suy ra AM=AF=CF=CM=BM

Xét tứ giác AMCF có AM=CM=CF=FA(cmt)

nên AMCF là hình thoi(Dấu hiệu nhận biết hình thoi)

b)

Sửa đề: Tìm điều kiện của ΔABC để tứ giác AMCF là hình vuông

Hình thoi AMCF trở thành hình vuông khi  \(\widehat{AMC}=90^0\)

hay \(AM\perp BC\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC(\(AM\perp BC\))

AM là đường trung tuyến ứng với cạnh BC(M là trung điểm của BC)

Do đó: ΔABC cân tại A(Định lí tam giác cân)

hay AB=AC

Vậy: Khi ΔABC có thêm điều kiện AB=AC thì AMCF trở thành hình vuông

c)

Ta có: MD\(\perp\)AB(gt)

AC\(\perp\)AB(ΔABC vuông tại A)

Do đó: MD//AC(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(cmt)

Do đó: D là trung điểm của AB(Định lí 1 đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

D là trung điểm của AB(cmt)

Do đó: MD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên \(MD=\dfrac{AC}{2}\)(Định lí 2 đường trung bình của tam giác)(1)

Ta có: \(ME\perp AC\)(gt)

\(AB\perp AC\)(ΔABC vuông tại A)

Do đó: ME//AB(Định lí 1 từ vuông góc tới song song)

Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(cmt)

Do đó: E là trung điểm của AC(Định lí 1 đường trung bình của tam giác)

nên \(CE=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MD=CE

Xét tứ giác CMDE có 

MD//CE(MD//AC)

MD=CE(cmt)

Do đó: CMDE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo CD và EM cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà I là trung điểm của EM(gt)

nên I là trung điểm của CD(đpcm)

18 tháng 12 2021

a: Xét tứ giác ABMD có 

O là trung điểm của AM

O là trung điểm của BD

Do đó: ABMD là hình bình hành

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

22 tháng 11 2016

Hình học lớp 8

a. Tứ giác AMCK là HBH ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường ) và có góc M = 900 ( vì AM là đường trung trực của D cân cũng là đường cao) nên tứ giác AMCK là HCN.

b. Diện tích của hình chữ nhật biết AM = 12cm, MC = 5cm là :

SAMCK = 12. 5 = 60cm2

c. Để AMCK là HV thì cần AM = MC

khi đó ΔABC phải là tam giác vuông cân tại A để đường trung trực ứng với cạnh huyền bằng nửa cạnh huyền hay AM = MC.

22 tháng 11 2016

HÌNH VẼ NHƯ CỦA BẠN PHÙNG KHÁNH LINH NHÉ!!!!!1

a) Xét tứ giác AKCM có:

MI = MK (K là điểm đối xứng với M qua I (gt))

IA = IC (I là trung điểm AC (gt))

AC giao MK tại I

\(\Rightarrow\)AMCK là hình bình hành (dhnb) (1)

\(\Delta ABC\) cân tại A (gt)

AM là đường trung tuyến (gt)

\(\Rightarrow\) AM cũng là đường cao (t/c)

\(\Rightarrow\)\(\widehat{AMK} = 90^O\)(2)

Từ (1)(2) \(\Rightarrow\) AKCM là hình chữ nhật (dhnb)

b) Ta có công thức tính diện tích hình chữ nhật là:

\(S=a\cdot b\)

trong đó a là chiều dài (=AM=12cm)

b là chiều rộng (=MC=5cm)

\(\Rightarrow\) SAMCK = 12 * 5 = 60 (cm2)

c) Để AMCK là hình vuông

\(\Leftrightarrow\) AMCK vừa là hình chữ nhật, vừa là hình thoi

mà AMCK là hình chữ nhật (cmt)

Vậy ta cần tìm điều kiện để AMCK là hình thoi

Để AMCK là hình thoi

\(\Leftrightarrow\) AM = MC

\(MC=\frac{1}{2}BC\) (AM là đường trung tuyễn của \(\Delta ABC\)(gt))

\(\Leftrightarrow\) \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow\) \(\Delta ABC\) vuông tại A (tính chất về đường trung tuyến ứng với cạnh huyền)

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

Vậy muốn tứ giác AMCK là hình vuông thì \(\Delta ABC\) phải vuông cân tại A

 

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

14 tháng 12 2021

\(a,\) Vì M là trung điểm AD và BC nên ABDC là hình bình hành

Mà \(\widehat{BAC}=90^0\) nên ABDC là hình chữ nhật

\(b,\) Vì H,M là trung điểm AI và AD nên HM là đường trung bình \(\Delta ADI\)

\(\Rightarrow DI\text{//}HM\) hay \(DI//BC\)

Do đó BIDC là hình thang

Vì I đx với A qua BC nên \(AB=BI\) và BC là trung trực AI

Do đó \(\Delta ABI\) cân tại B

Suy ra BC là trung trực cũng là phân giác

Do đó \(\widehat{ABC}=\widehat{CBI}\left(1\right)\)

Lại có ABDC là hcn nên \(\widehat{BCD}+\widehat{ACB}=\widehat{ACD}=90^0\)

Mà \(\Delta ABC\bot A\) nên \(\widehat{ABC}+\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{BCD}=\widehat{ABC}\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow\widehat{CBI}=\widehat{BCD}\)

Vậy BIDC là hình thang cân