Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề , ta có
\(\frac{a+b}{b}=7\cdot\frac{a}{b}\) \(\left(b\ne0\right)\)
\(a+b=7a\)
\(b=6a\)
\(\Rightarrow1=6\cdot\frac{a}{b}\)
\(\frac{a}{b}=\frac{1}{6}\)
Gọi phân số ấy lúc đầu là \(\frac{n}{m}\)
Nếu chỉ cộng mẫu thì ta đc phân số \(\frac{n}{n+m}\)và phân số này < \(\frac{n}{m}\)2 lần
Để \(\frac{n+m}{2m}\)gấp 2 lần p/s ban đầu thì n+m=4 lần
=>m gấp 3 lần n
=>P/s thỏa mãn theo đk đề bài là 1/3
Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có :
\(\frac{a+b}{b+b}=\frac{2a}{b}\Rightarrow\frac{a+b}{2b}=\frac{4a}{2b}\Rightarrow a+b=4a\Rightarrow b=3a\Rightarrow\frac{a}{b}=\frac{1}{3}\)
Vậy phân số cần tìm là \(\frac{1}{3}\).
Gọi phân số tối giản là \(\frac{a}{b}\)(b khác 0)
Nếu cộng mẫu số vào tử thì phân số tăng lên 2018 lần
\(\Rightarrow\frac{a+b}{b}=\frac{2018a}{b}\)
\(\Rightarrow ab+b^2=2018ab\)
\(\Rightarrow2017ab=b^2\)
\(\Rightarrow2017a=b\)
\(\Rightarrow\frac{b}{a}=2017\Rightarrow\frac{a}{b}=\frac{1}{2017}\)
Vậy phân số tối giản là \(\frac{1}{2017}\)
Gọi phân số đó là \(\frac{a}{b}\) (a, b là số tự nhiên), ta có :
\(\frac{a}{b}\times3=\frac{a+b}{b+b}\)
\(\Rightarrow\frac{3a}{b}=\frac{a+b}{2b}\)
Nhân cả tử và mẫu cho 2 ta có:
\(\frac{2\times3a}{2\times b}=\frac{a+b}{2b}\)
\(\Rightarrow\frac{6a}{2b}=\frac{a+b}{2b}\)
\(\Rightarrow6a=a+b\)
\(6a-a=b\)
\(5a=b\)
Vậy \(\frac{a}{b}=\frac{1}{5}\)
(Lưu ý: \(3a=3\times a\))
gọi phân số đó là \(\frac{a}{b}\).theo bài ra ta có:
\(\frac{a+b}{b}=\frac{a}{b}.5\)
=>a+b=5a
=>b=4a
=>a/b=1/4