Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)
dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
Bài làm:
Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)
\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)
Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)
Học tốt!!!!
\(2y^2-y^2+x+y+1=x^2+xy+y^2\)
\(\Rightarrow x+y-x^2-xy=-1\)
\(\Rightarrow x-x^2+y-xy=-1\)
\(\Rightarrow x\left(1-x\right)+y\left(1-x\right)=-1\)
\(\Rightarrow\left(1-x\right)\left(x+y\right)=-1\)
TH1:
\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\0+y=1\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\x+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\-2+y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
vậy ....
í chết cha rồi nhầm tí .
sửa lại chỗ TH1 và TH2:
TH1:
\(\Rightarrow\hept{\begin{cases}1-x=1\\x+y=-1\end{cases}}\)
TH2:
\(\Rightarrow\hept{\begin{cases}1-x=-1\\x+y=1\end{cases}}\)
đến đây bạn tự làm nốt nha
Bài làm:
a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)
\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)
\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)
\(=y-x^2\)
b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)
\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)
\(=x-y^2\)
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)
a: =-(x^2-2x-7)
=-(x^2-2x+1-8)
=-(x-1)^2+8<=8
Dấu = xảy ra khi x=1
b: \(B=\left(x-y\right)\left[-2\left(x-y\right)+5\right]+14\)
\(=-2\left(x-y\right)^2+5\left(x-y\right)+14\)
\(=-2\left[\left(x-y\right)^2-\dfrac{5}{2}\left(x-y\right)-7\right]\)
\(=-2\left[\left(x-y\right)^2-2\cdot\left(x-y\right)\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{137}{16}\right]\)
\(=-2\left(x-y-\dfrac{5}{4}\right)^2+\dfrac{137}{8}< =\dfrac{137}{8}\)
Dấu = xảy ra khi x=y+5/4