Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)
dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)
Thay x=-8 và y=6 cào C ta được:
\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)
bạn nói với mình điều kiện x>2 vậy làm như sau:
Đặt:\(A=\frac{3x-x^2-18}{x-2}=-\frac{x^2-3x+18}{x-2}=-\frac{x^2-4x+4+x-2+16}{x-2}\)
\(=-\frac{\left(x-2\right)^2+\left(x-2\right)+16}{x-2}\)\(=-\left(x-2+1+\frac{16}{x-2}\right)\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-2+\frac{16}{x-2}\ge2\sqrt{\left(x-2\right).\frac{16}{x-2}}=8\)
=>\(x-2+\frac{16}{x-2}+1\ge9\)=>\(A=-\left(x-2+1+\frac{16}{x-2}\right)\le-9\)
=> maxA=-9 <=> x=6
-Ta có : \(A=\dfrac{x^2+4x+4}{x}=\dfrac{x^2}{x}+\dfrac{4x}{x}+\dfrac{4}{x}=\left(x+\dfrac{4}{x}\right)+4\)
Áp dụng bất đẳng thức cô si ta có :\(x+\dfrac{4}{x}\ge2\sqrt{x.\dfrac{4}{x}}=4\)
Do đó :A\(\ge4+4=8\)
Dấu "=" xảy ra khi :\(x=\dfrac{4}{x}\Leftrightarrow x^2=4\Leftrightarrow x=2\) (\(x>0\))
Vậy giá trị nhỏ nhất của A là 8 khi \(x=2\)
- Ta có :B=\(\dfrac{x^2}{x-1}=\dfrac{x^2-1+1}{x-1}=\dfrac{\left(x-1\right)\left(x+1\right)}{x-1}+\dfrac{1}{x-1}=x+1+\dfrac{1}{x-1}=\left(x-1\right)+\dfrac{1}{x-1}+2\)Áp dụng bất đẳng thức cô si ta có :
\(\left(x-1\right)+\dfrac{1}{x-1}\ge2\sqrt{\left(x-1\right).\dfrac{1}{\left(x-1\right)}}=2\)
Do đó :B\(\ge2+2=4\)
Dấu "=" xảy ra khi :\(x-1=\dfrac{1}{x-1}\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow x-1=1\Leftrightarrow x=2\)
Vậy giá trị nhỏ nhất của B là 4 khi \(x=2\)
A=(x^2+4x+4)/x
=(x+2)^2/x
ta thấy: (x+2)^2>0 hoặc (x+2)^2=0 với mọi x
nên: (x+2)^2/x>0 khi x>0
hay (x^2+4x+4)/x>0 khi x>0
1:
ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)
\(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)
\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)
\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)
Cả 2 biểu thức này đều ko tồn tại GTNN
GTNN chỉ tồn tại khi có thêm điều kiện, với \(\dfrac{x^2}{x+3}\) thì điều kiện là \(x>-3\), còn \(\dfrac{x^2}{x-2}\) thì điều kiện là \(x>2\)
viết thiếu, rời mới nhận ra