Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\int\dfrac{x}{\sqrt{1-x^2}}dx=-\dfrac{1}{2}\int\dfrac{1}{\sqrt{1-x^2}}d(1-x^2)=-\sqrt{1-x^2}\)
ĐKXĐ: \(36-3^{x+4}>0\Rightarrow x< log_3\dfrac{4}{9}\)
\(log_3\left(36-3^{x+4}\right)=1-x\Leftrightarrow36-3^{x+4}=3^{1-x}\)
\(\Leftrightarrow36.3^x-81.3^{2x}-3=0\)
Đặt \(3^x=t>0\Rightarrow-81t^2+36t-3=0\Rightarrow\left[{}\begin{matrix}t=\dfrac{1}{3}\\t=\dfrac{1}{9}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3^x=\dfrac{1}{3}\\3^x=\dfrac{1}{9}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)
1/
-Đầu báo cháy
-Búa thoát hiểm
-Bình chữa cháy
-Bình dung dịch bọt
-Thang dây thoát hiểm
...
2/
Rút chốt an toàn trên bình cứu hỏa. Tay phải bóp cò tay trái cầm loa phun của bình. Hướng loa phun về đám cháy và có khoảng cách từ 0,5 – 1,5m. Bóp mạnh van xả mỏ vịt để khí CO2 thoát ra khỏi bình dưới dạng tuyết thán. Tác dụng làm lạnh đám cháy ngăn ngọn lửa lan rộng. quét qua quét lại loa phun cho tới khi dập tắt đám cháy hoàn toàn.
Lời giải:
a) Vì \(6^x-2^x>0\Rightarrow x>0\)
Xét \(y=6^x-2^x-32\) có \(y'=\ln 6.6^x-\ln 2.2^x>0\forall x>0\) nên hàm $y$ đồng biến trên \(x\in(0,+\infty)\).
Khi đó phương trình \(6^x-2^x=32\) có nghiệm duy nhất $x=2$
b) Có \(5^{7^x}=7^{5^x}\Leftrightarrow \log(5^{7^x})=\log (7^{5^x})\)
\(\Leftrightarrow 7^x\log 5=5^x\log 7=7^{x\frac{\log 5}{\log 7}}\log 7\)
\(\Leftrightarrow 7^{x(1-\frac{\log 5}{\log 7})}=\frac{\log 7}{\log 5}=10^{x\log 7(1-\frac{\log 5}{\log 7})}=10^{x\log(\frac{7}{5})}\)
\(\Leftrightarrow x\log\frac{7}{5}=\log\left ( \frac{\log 7}{\log 5} \right )\)\(\Rightarrow x=\frac{\log\left ( \frac{\log 7}{\log 5} \right )}{\log\frac{7}{5}}\)
d) ĐKXĐ:...........
\(3^x+\frac{1}{3^x}=\sqrt{8-x^2}\Leftrightarrow 9^x+\frac{1}{9^x}+2=8-x^2\)
\(\Leftrightarrow 9^x+\frac{1}{9^x}+x^2=6\)
Giả sử \(x\geq 0\) . Xét hàm \(y=9^x+\frac{1}{9^x}+x^2\) có \(y'=9^x\ln 9-\frac{\ln 9}{9^x}+2x\geq 0\) nên hàm đồng biến trên \(x\in [0,+\infty)\)
Do đó PT \(9^x+\frac{1}{9^x}+x^2=6\) với $x\geq 0$ có nghiệm duy nhất \(x\approx 0,753897\)
---------------------------------------------------------------------------------
Vì hàm \(y\) là hàm chẵn nên $-x$ cũng là nghiệm, do đó tổng kết lại PT có nghiệm là \(x\approx \pm 0,753897\)