K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 11 2021

a.

\(\overrightarrow{u}=2\left(2;1\right)-\left(3;4\right)=\left(1;-2\right)\)

\(\overrightarrow{v}=3\left(3;4\right)-2\left(7;2\right)=\left(-5;8\right)\)

\(\overrightarrow{w}=5\left(7;2\right)+\left(2;1\right)=\left(37;11\right)\)

b.

\(\overrightarrow{x}=2\left(2;1\right)+\left(3;4\right)-\left(7;2\right)=\left(0;4\right)\)

\(\overrightarrow{z}=2\left(2;1\right)-3\left(3;4\right)+\left(7;2\right)=\left(2;-8\right)\)

c.

\(\overrightarrow{w}+\overrightarrow{a}=\overrightarrow{b}-\overrightarrow{c}\Rightarrow\overrightarrow{w}=\overrightarrow{b}-\overrightarrow{c}-\overrightarrow{a}\)

\(\Rightarrow\overrightarrow{w}=\left(3;4\right)-\left(7;2\right)-\left(2;1\right)=\left(-6;1\right)\)

NV
15 tháng 11 2018

\(\overrightarrow{m}=2\overrightarrow{a}+3\overrightarrow{b}-\overrightarrow{c}=2\left(3;2\right)+3\left(-4;7\right)-\left(5;0\right)=\left(2.3-3.4-5;2.2+3.7+0\right)=\left(-11;25\right)\)

\(\overrightarrow{a}=x.\overrightarrow{b}+y.\overrightarrow{c}\) \(\Rightarrow\left\{{}\begin{matrix}3=-4x+5y\\2=7x+0.y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-11}{28}\\y=\dfrac{2}{7}\end{matrix}\right.\)

Vậy \(\overrightarrow{a}=\dfrac{-11}{28}\overrightarrow{b}+\dfrac{2}{7}\overrightarrow{c}\)

Tương tự câu trên: \(\overrightarrow{c}=x.\overrightarrow{a}+y.\overrightarrow{b}\) \(\Rightarrow\left\{{}\begin{matrix}5=3x-4y\\0=2x+7y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{35}{29}\\y=\dfrac{-10}{29}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{c}=\dfrac{35}{29}\overrightarrow{a}-\dfrac{10}{29}\overrightarrow{b}\)

Quên còn biểu biễn b chưa làm, thôi bạn tự làm nốt, nó y hệt thôi, cứ việc bấm máy giải hệ 3s là xong

14 tháng 9 2021

\(\left[{}\begin{matrix}2x_U-3x_A+x_B=0\\2y_U-3y_A+y_B=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x_U=6\\2y_U=2\end{matrix}\right.\Rightarrow\overrightarrow{u}=\left(3;1\right)\)

\(b.\left[{}\begin{matrix}3x_U+2x_A+3x_B=3x_C\\3y_U+2y_A+3y_B=3y_C\end{matrix}\right.\left[{}\begin{matrix}3x_U=1\\3y_U=-31\end{matrix}\right.\Rightarrow\overrightarrow{u}=\left(\dfrac{1}{3};-\dfrac{31}{3}\right)\)

vecto i=(1;0)

vecto j=(0;1)

a: vecto a=(1;-3)

b: vecto b=(1/2;1)

c: vecto c=(-1;3/2)

d: vecto d=(0;-4)

e: vecto e=(3;0)

21 tháng 11 2019

\(\overrightarrow{c}=2\left(2;1\right)+3\left(3;-2\right)=\left(4+9;2-6\right)=\left(13;-4\right)\)

NV
26 tháng 12 2021

\(\overrightarrow{u}+2\overrightarrow{v}-3\overrightarrow{w}+\overrightarrow{x}=\overrightarrow{0}\)

\(\Rightarrow\overrightarrow{x}=3\overrightarrow{w}-\overrightarrow{u}-2\overrightarrow{v}=3\left(-5;7\right)-\left(2;-5\right)-2\left(3;4\right)=\left(-23;18\right)\)

NV
16 tháng 12 2020

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(1;-1\right)\\\overrightarrow{BC}=\left(-3;4\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=3\overrightarrow{AB}+2\overrightarrow{BC}=\left(-3;5\right)\)

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(1-x;5-y\right)\)

Để ABCD là hbh \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=1\\5-y=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=6\end{matrix}\right.\)

\(\Rightarrow D\left(0;6\right)\)

5 tháng 1 2021

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{a}=m\overrightarrow{u}+\overrightarrow{v}=\left(4m+1;m+4\right)\\\overrightarrow{b}=\overrightarrow{i}+\overrightarrow{j}=\left(1;1\right)\end{matrix}\right.\)

Yêu cầu bài toán <=> cos\(\left(\overrightarrow{a};\overrightarrow{b}\right)\)=cos45o =\(\dfrac{\sqrt{2}}{2}\)

<=> \(\dfrac{\left(4m+1\right)+\left(m+4\right)}{\sqrt{2}\sqrt{\left(4m+1\right)^2+\left(m+4\right)^2}}=\dfrac{\sqrt{2}}{2}\)

<=> \(\dfrac{5\left(m+1\right)}{\sqrt{2}\sqrt{17m^2+16+17}}=\dfrac{\sqrt{2}}{2}\)

<=> \(5\left(m+1\right)=\sqrt{17m^2+16m+17}\)  <=>\(\left\{{}\begin{matrix}m+1\ge0\\25m^2+50m+25=17m^2+16m+17\end{matrix}\right.\)

<=> m=\(-\dfrac{1}{4}\)

5 tháng 1 2021

Còn 2 ở mẫu kia thì đi đâu r ạ