Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1,2 bạn đã đăng và có lời giải rồi
Câu 3:
\(=\frac{(\sqrt{3})^2+(2\sqrt{5})^2-2.\sqrt{3}.2\sqrt{5}}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{(\sqrt{3}-2\sqrt{5})^2}{\sqrt{2}(\sqrt{3}-2\sqrt{5})}=\frac{\sqrt{3}-2\sqrt{5}}{\sqrt{2}}\)
\(a,\)
\(=\left(\dfrac{\sqrt{x}-1}{3\sqrt{x}-1}-\dfrac{1}{3\sqrt{x}+1}+\dfrac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right):\left(\dfrac{3}{3\sqrt{x}+1}\right)\)
\(=\dfrac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}+3x}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\dfrac{3\sqrt{x}+1}{3}\)
\(=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)
Vậy \(P=\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}\)
\(b,\)Thay \(P=\dfrac{6}{5}\) vào pt, ta có :
\(\dfrac{3\sqrt{x}+1}{3\sqrt{x}-1}=\dfrac{6}{5}\)
\(\Leftrightarrow5\left(3\sqrt{x}+1\right)=6\left(3\sqrt{x}-1\right)\)
\(\Leftrightarrow15\sqrt{x}+5-18\sqrt{x}+6=0\)
\(\Leftrightarrow-3\sqrt{x}+11=0\)
\(\Leftrightarrow-3\sqrt{x}=-11\)
\(\Leftrightarrow\sqrt{x}=\dfrac{11}{3}\)
\(\Leftrightarrow x=\left(\dfrac{11}{3}\right)^2\)
\(\Leftrightarrow x=\dfrac{121}{9}\)
Vậy \(x=\dfrac{121}{9}\) thì \(P=\dfrac{6}{5}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
\(1,B=9-5=4\\ 2,\dfrac{\sqrt{5}+1}{3-2\sqrt{2}}-\dfrac{\sqrt{10}}{\sqrt{5}-2}+3\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(\sqrt{5}+1\right)\left(3+2\sqrt{2}\right)-\sqrt{10}\left(\sqrt{5}+2\right)+3\sqrt{2}-3\sqrt{5}\\ =3\sqrt{5}+2\sqrt{10}+3+2\sqrt{2}-5\sqrt{2}-2\sqrt{10}+3\sqrt{2}-3\sqrt{5}=3\)
\(3,\\ a,\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\left(x,y\ge0;xy\ne1\right)\\ =\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\\ =\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}+\sqrt{y}-y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{1+x+y+xy}\\ =\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+x\right)+y\left(1+x\right)}=\dfrac{2\left(\sqrt{x}+\sqrt{y}\right)}{\left(1+y\right)\left(1+x\right)}\)
\(b,x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{1}=4-2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{3}-1\)
Thay vào BT
\(=\dfrac{2\left(\sqrt{3}-1+\sqrt{y}\right)}{\left(1+y\right)\left(1+4-2\sqrt{3}\right)}=\dfrac{2\sqrt{3}-2+2\sqrt{y}}{\left(1+y\right)\left(3-2\sqrt{3}\right)}\\ =\dfrac{2\sqrt{3}-2+2\sqrt{y}}{3-2\sqrt{3}+3y-2y\sqrt{3}}\)
a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)
\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)
\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)
\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)
=-1
Bài 1:
a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:
\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)
b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\)
c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)
\(\Leftrightarrow3-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 3\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)
Câu 1:
\(\sqrt{33-8\sqrt{7}}=\sqrt{33-2\cdot\sqrt{112}}\)
Câu 2:
\(\Leftrightarrow2\sqrt{x}-3\sqrt{x}+8\sqrt{x}=18\)
\(\Leftrightarrow7\sqrt{x}=18\)
=>căn x=18/7
hay x=324/49
đề là rút gọn các biểu thức sau
nhờ mọi người giải giúp mình. cảm ơn mn nhìu
a: \(=\dfrac{\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}\)
\(=\dfrac{\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)}{2\left(\sqrt{5}+1\right)}=\dfrac{3\sqrt{5}+5-3-\sqrt{5}}{2\sqrt{5}+2}\)
\(=\dfrac{2\sqrt{5}+2}{2\sqrt{5}+2}=1\)
b: \(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-2-2\sqrt{5}\)
=2căn 5-2-2căn 5
=-2
d: \(=\dfrac{\sqrt{2}}{2+\sqrt{3}+1}+\dfrac{\sqrt{2}}{2-\sqrt{3}+1}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}\)
\(=\dfrac{3\sqrt{2}-\sqrt{6}+3\sqrt{2}+\sqrt{6}}{6}=\sqrt{2}\)
3.
Ta có: \(VT=\)\(8+2\sqrt{10+2\sqrt{5}}+8-2\sqrt{10+2\sqrt{5}}\)
\(=8+8+\left(2\sqrt{10+2\sqrt{5}}-2\sqrt{10+2\sqrt{5}}\right)\)
\(=16\ne VP\)
⇒ Đề sai
1. Ta có: \(\sqrt{4x}\)- 3\(\sqrt{x}\)+2\(\sqrt{15x}\)=18
⇌2\(\sqrt{x}\)-3\(\sqrt{x}\) +2\(\sqrt{15x}\)=18
⇌\(-\sqrt{x}\) +2\(\sqrt{15x}\)-15 = 3
⇌-(\(\sqrt{x}\) -2\(\sqrt{15x}\)+15 )=3
⇌(\(\sqrt{x}\)-\(\sqrt{15}\))=-3 (vô lí)
Vậy không tìm được giá trị x thỏa mãn bài toán
2.Ta có: B=\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{7-2\sqrt{10}}\)
= \(\dfrac{1}{\sqrt{6-2\sqrt{6.5}+5}}-\dfrac{3}{2-2\sqrt{2.5}+5}\)
=\(\dfrac{1}{\sqrt{\left(\sqrt{6}-\sqrt{5}\right)^2}}-\dfrac{3}{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=\(\dfrac{1}{\sqrt{6}-\sqrt{5}}-\dfrac{3}{\sqrt{3}-\sqrt{2}}\)
hình như đề sai