K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\dfrac{6}{\sqrt{5}+1}+\sqrt{\dfrac{2}{3-\sqrt{5}}}-\dfrac{10}{\sqrt{5}}\)

\(=\dfrac{6\left(\sqrt{5}-1\right)}{4}+\sqrt{\dfrac{2\left(3+\sqrt{5}\right)}{4}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\left(\sqrt{5}-1\right)+\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-2\sqrt{5}\)

\(=\dfrac{3}{2}\sqrt{5}-\dfrac{3}{2}-2\sqrt{5}+\dfrac{\sqrt{5}+1}{2}\)

\(=-\dfrac{1}{2}\sqrt{5}-\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}+\dfrac{1}{2}\)

=-1

 

Bài 1: 

a) Thay \(x=\dfrac{1}{4}\)vào B, ta được:

\(B=1:\left(\dfrac{1}{4}\cdot\dfrac{1}{2}+27\right)=1:\left(27+\dfrac{1}{8}\right)=\dfrac{8}{217}\)

b) Ta có: \(A=\dfrac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\dfrac{1}{\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)

\(=\dfrac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-6-x+2\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

c) Để \(A>\dfrac{1}{2}\) thì \(A-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-3}{2\left(\sqrt{x}+3\right)}>0\)

\(\Leftrightarrow3-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 3\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne4\end{matrix}\right.\)

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

Câu I.Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+1}{x^2}\) và \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\times\dfrac{\sqrt{x}-1}{x^2}\) với \(x\ge0,x\ne4.\)1) Tính giá trị của A tại x = 9.2) Rút gọn B.3) Tìm x để B < A.Câu II.1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai đội công nhân A và B cùng nhau làm một công việc thì hoàn thành trong 16 ngày. Nếu đội A làm trong 4 ngày rồi nghỉ, và tiếp...
Đọc tiếp

undefined

Câu I.

Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+1}{x^2}\) và \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\times\dfrac{\sqrt{x}-1}{x^2}\) với \(x\ge0,x\ne4.\)

1) Tính giá trị của A tại x = 9.

2) Rút gọn B.

3) Tìm x để B < A.

Câu II.

1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai đội công nhân A và B cùng nhau làm một công việc thì hoàn thành trong 16 ngày. Nếu đội A làm trong 4 ngày rồi nghỉ, và tiếp theo đội B làm 3 ngày thì cả hai hoàn thành được \(\dfrac{11}{48}\) công việc. Hỏi nếu mỗi đội làm riêng thì làm xong công việc đó trong mấy ngày?

2) Một hình trụ có chiều cao bằng 2 lần bán kính đáy. Tính diện tích toàn phần của hình trụ đó biết thể tích của hình trụ là 128π (cm3).

Câu III. 

1) Giải hệ phương trình: \(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)

2) Cho phương trình \(x^2-\left(m-3\right)x+2m-11=0\) ( với m là tham số)

a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m.

b) Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là độ dài hai cạnh của một tam giác vuông với cạnh huyền bằng 4.

Câu IV.

Cho tam giác nhọn ABC nội tiếp đường tròn tâm (O) và AC > BC. Gọi AD, BE, CF là ba đường cao, H là trực tâm của tam giác ABC. Gọi M, N lần lượt là trung điểm của AD, AC. Tia CO cắt DE tại P.

1) Chứng minh rằng tứ giác ABDE nội tiếp và △ABD đồng dạng với △CON.

2) Chứng minh rằng CP⊥DE và \(\widehat{FCP}=\widehat{ABC}-\widehat{CAB}.\)

3) Chứng minh rằng \(\widehat{MNF}=\widehat{FCP}\) và tứ giác FMPD nội tiếp.

Câu V.

Giải phương trình: \(\left(\sqrt{x+1}-\sqrt{x-2}\right).\left(\sqrt{4-x}+1\right)=2\).

 

15
12 tháng 4 2021

Bài 1. ĐKXĐ thêm x ≠ 1 nữa ạ

1) Với x = 9 tmđk, thay vào A ta được : \(A=\dfrac{2\sqrt{9}+1}{9^2}=\dfrac{7}{81}\)

2) \(B=\left[\dfrac{4x}{\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\cdot\dfrac{\sqrt{x}-1}{x^2}\)

\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}=\dfrac{4x-1}{x^2}\)

3) Để B < A thì \(\dfrac{4x-1}{x^2}< \dfrac{2\sqrt{x}+1}{x^2}\)

<=> \(\dfrac{4x-1}{x^2}-\dfrac{2\sqrt{x}+1}{x^2}< 0\)

<=> \(\dfrac{4x-2\sqrt{x}-2}{x^2}< 0\)

Vì x2 > 0 ∀ x

=> \(4x-2\sqrt{x}-2< 0\)

<=> \(2x-\sqrt{x}-1< 0\)

<=> \(\left(\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)< 0\)

Vì \(2\sqrt{x}+1\ge1>0\forall x\ge0\)

=> \(\sqrt{x}-1< 0\)<=> x < 1

Vậy với x < 1 thì B < A

12 tháng 4 2021

Câu 3 : 

\(\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2x-4y+\dfrac{3}{2x+3y}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+\dfrac{1}{2x+3y}=2\\2\left(x-2y\right)+\dfrac{3}{2x+3y}=3\end{matrix}\right.\)

Đặt \(x-2y=t;\dfrac{1}{2x+3y}=z\)

Hệ phương trình tương đương 

\(\left\{{}\begin{matrix}t+z=2\\2t+3z=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=2-z\left(1\right)\\2t+3z=3\left(2\right)\end{matrix}\right.\)

Thế (1) vào (2) ta được : \(2\left(2-z\right)+3z=3\Leftrightarrow4-2z+3z=3\Leftrightarrow z=-1\)

\(\Rightarrow t=2-z=3\)

hay \(\left\{{}\begin{matrix}x-2y=3\\\dfrac{1}{2x+3y}=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3+2y\left(3\right)\\\dfrac{1}{2x+3y}=-1\left(4\right)\end{matrix}\right.\)

Thế (3) vào (4) ta được : \(\dfrac{1}{2\left(3+2y\right)+3y}=-1\Leftrightarrow\dfrac{1}{6+7y}=-1\Rightarrow-6-7y=1\Leftrightarrow-7y=7\Leftrightarrow y=-1\)

\(\Rightarrow x=3-2=1\)

Vậy \(\left(x;y\right)=\left(1;-1\right)\)

18 tháng 10 2021

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

18 tháng 10 2021

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

10 tháng 7 2021

a) \(B=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\left(1-\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\right)\left(x\ge0,x\ne1\right)\)

\(=\left(\dfrac{2\sqrt{x}+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{x+\sqrt{x}+1-\sqrt{x}-2}{x+\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x-1}{x+\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{x+\sqrt{x}+1}{x-1}=\dfrac{1}{x-1}\)

 

10 tháng 7 2021

undefinedundefined

26 tháng 8 2021

đk : \(x\ge0,x\ne1\)

\(=>P=\left[\dfrac{2\left(\sqrt{x}+2\right)-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]:\left[\dfrac{x+\sqrt{x}-2+3-x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right]\)

\(P=\left[\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right].\left[\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+1}\right]\)

\(P=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)

b,\(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\) thay vào P

\(=>P=\dfrac{2\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}=\dfrac{2\sqrt{5}-3}{\sqrt{5}}\)

c,\(=>\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{\sqrt{x}}=>2x-\sqrt{x}=\sqrt{x}+1\)

\(=>2x-2\sqrt{x}-1=0< =>2\left(x-\sqrt{x}-\dfrac{1}{2}\right)=0\)

\(=>x-\sqrt{x}-\dfrac{1}{2}=>\Delta=1-4\left(-\dfrac{1}{2}\right)=3>0=>\left[{}\begin{matrix}x1=\dfrac{1+\sqrt{3}}{2}\\x2=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

đối chiếu đk loại x2 còn x1 thỏa

 

 

Câu 1.Cho hai biểu thức \(A=\dfrac{\sqrt{x}+2}{1+\sqrt{x}}\) và \(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\).1) Tính giá trị biểu thức A khi x = 36.2) Rút gọn biểu thức B.3) Với x ∈ \(\mathbb{Z}\), tìm giá trị lớn nhất của biểu thức P = A.B.Câu 2.Giải bài toán sau bằng cách lập hệ phương trình:Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 720 dụng...
Đọc tiếp

undefined

Câu 1.

Cho hai biểu thức \(A=\dfrac{\sqrt{x}+2}{1+\sqrt{x}}\) và \(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\).

1) Tính giá trị biểu thức A khi x = 36.

2) Rút gọn biểu thức B.

3) Với x ∈ \(\mathbb{Z}\), tìm giá trị lớn nhất của biểu thức P = A.B.

Câu 2.

Giải bài toán sau bằng cách lập hệ phương trình:

Theo kế hoạch, hai xí nghiệp A và B phải làm tổng cộng 720 dụng cụ cùng loại. Trên thực tế do cải tiến kĩ thuật, xí nghiệp A hoàn thành vượt mức 12%, còn xí nghiệp B hoàn thành vượt mức 10% so với kế hoạch. Do đó thực tế cả hai xí nghiệp làm được tổng cộng 800 dụng cụ. Tính số dụng cụ mỗi xí nghiệp phải làm theo kế hoạch?

Câu 3.

1) Giải phương trình: 3x4 - 2x2 - 40 = 0

2) Cho phương trình x2 + (m - 1)x - m2 - 2 = 0 (1), với m là tham số thực.

a) Chứng minh phương trình (1) luôn có hai nghiệm trái dấu x1, x2 với mọi giá trị của m.

b) Tìm m để biểu thức \(T=\left(\dfrac{x_1}{x_2}\right)^3+\left(\dfrac{x_2}{x_1}\right)^3\) đạt giá trị lớn nhất.

Câu 4.

Cho (O; R) và một điểm P nằm ngoài đường tròn. Kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là tiếp điểm).  Tia PO cắt đường tròn tại hai điểm K và I (K nằm giữa P và O) và cắt AB tại H. Gọi D là điểm đối xứng với B qua O, C là giao điểm của PD với đường tròn (O).

1) Chứng  minh tứ giác BHCP nội tiếp.

2) Chứng minh PC.PD = PO.PH.

3) Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt BI tại Q. Chứng minh tam giác AQH cân.

4) Giả sử \(\widehat{BDC}=45^o\). Tính diện tích tam giác PBD phần nằm bên ngoài đường tròn (O) theo R.

Câu 5. 

Tìm m để phương trình ẩn x sau đây có ba nghiệm phân biệt.   x3 - 2mx2 + (m2 + 1)x - m = 0.

7
15 tháng 4 2021

Câu 1:

a) ĐKXĐ: \(x>0;x\ne9\)

Với x=36 (thỏa mãn ĐKXĐ) thì A có giá trị :

\(A=\dfrac{\sqrt{36}+2}{1+\sqrt{36}}=\dfrac{6+2}{1+6}=\dfrac{8}{7}\)

 

b) Ta có: 

\(B=\left(\dfrac{2\sqrt{x}}{x-\sqrt{x}-6}+\dfrac{\sqrt{x}}{\sqrt{x}-3}\right):\dfrac{\sqrt{x}}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}=\dfrac{x+4\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

 

c) Ta có:

\(P=A\cdot B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{\sqrt{x}+4}{\sqrt{x}+1}=1+\dfrac{3}{\sqrt{x}+1}\)

Vì x là số nguyên lớn hơn 0 nên 

\(x\ge1\Rightarrow\sqrt{x}\ge1\Rightarrow\sqrt{x}+1\ge2>0\Rightarrow P\le1+\dfrac{3}{2}=\dfrac{5}{2}\)

Dấu bằng xảy ra khi x=1;

 

 

15 tháng 4 2021

Gọi số sản phẩm dự định của xí nghiệp A và B lần lượt là x,y \(\left(x,y\in N;0< x,y< 720\right)\)

Vì tổng sản phẩm dự định là 720 nên ta có phương trình: \(x+y=720\left(1\right)\)

Vì thực tế , xí nghiệp A hoàn thành vượt mức 12% nên số sản phẩm xí nghiệp A thực tế là : \(112\%x=\dfrac{28}{25}x\)

Xí nghiệp B hoàn thành vượt mức 10% nên số sản phẩm xí nghiệp B thực tế là : \(110\%y=\dfrac{11}{10}y\)

Vì tổng số sản phẩm thực tế là 800 nên ta có phương trình: \(\dfrac{28}{25}x+\dfrac{11}{10}y=800\Leftrightarrow56x+55y=40000\left(2\right)\)

Từ (1)(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=720\\56x+55y=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=720\\55\cdot720+x=40000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=400\\y=320\end{matrix}\right.\left(t.m\right)\)

Vậy số sản phẩm 2 xí nghiệp làm theo kế hoạch lần lượt là 400 và 320 sản phẩm