K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OAa) Chứng minh: Tam giác OAH = tam giác OBHb) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBNc) Chứng minh AB vuông góc với OHd) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C...
Đọc tiếp

1. Cho tia Ot là tia phân giác của góc xOy nhọn. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA = OB. Trên tia Oy lấy điểm H sao cho OH > OA

a) Chứng minh: Tam giác OAH = tam giác OBH

b) Tia AH cắt Oy tại M, tia BH catứ tia Ox tại N. Chứng minh tam giác OAM = tam giác OBN

c) Chứng minh AB vuông góc với OH

d) Gọi K là trung điểm của MN. Chứng minh: K thuộc tia Ot

2. Cho góc nhọn xAy. Trên tia Ax lấy B. Trên tia Ay lấy C sao cho AB - AC. Kẻ BH vuông góc AC (H thuộc AC) và CK vuông góc AB (K thuộc AB)

a) Chứng minh góc ABH = góc ACK

b) BH cắt CK tại E. Chứng minh AE vuông góc BC

c) Tam giác ABC phải thoả mãn điều kiện gì để E là điểm cách đều 3 cạnh ?

3. Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA

a) Chứng minh: Tam giác AMB = tam giác DMC

b) Chứng minh: AC = BD và AC //BD

c) Chứng minh: Tam giác ABC = tam giác DCB. Tính số đo góc BDC

4. Cho tam giác ABC vuông tại A có góc ABC = 60 độ

a) Tính số đo góc ACB

b) Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Chứng minh tam giác ABD = tam giác ABC

c) Vẽ tia Bx là tia phân giác của góc ABC. Qua C vẽ đường thẳng vuông góc với AC, cắt tia Bx tại E. Chứng minh AC = 1/2 BE

2
1 tháng 8 2016

Võ Hùng Nam hảo hảo a~

Bài 3: 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD
Do đó: ABDC là hình bình hành

Suy ra:AC//BD và AC=BD

c: Xét ΔABC và ΔDCB có 

AB=DC

\(\widehat{ABC}=\widehat{DCB}\)

BC chung

Do đó: ΔABC=ΔDCB

Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

10 tháng 9 2016

bạn làm thế này nha : 
Câu 1: x = y .( 2x-1) 
vì x, y nguyên nên x chia hết cho 2x -1 
suy ra 2.x cũng chia hết cho 2x-1 
hay ( 2x - 1 ) + 1 chia hết cho 2x -1 
suy ra 1 cũng phải chia hết cho 2x - 1 
vậy 2x- 1 là ước của 1 ( là 1 và -1) 
ta xét : 
2x-1 = 1 suy ra x = 1 suy ra y = 1 
2x-1 = -1 suy ra x = 0 , suy ra y = 0 
vậy pt này có 2 nghiệm (1,1) và (0,0) 

Bài 2: a)Thay a + c = 2b vào 2bd = c(b + d) => (a + c)d = c(b + d) 
=> ad + cd = bc + cd => ad = bc hay a/b = c/d

b)Giả sử số có 3 chữ số là =111.a ( a là chữ số khác 0)
Gọi số số hạng của tổng là n , ta có :
Hay n(n+1) =2.3.37.a 
Vậy n(n+1) chia hết cho 37 , mà 37 là số nguyên tố và n+1<74 ( Nếu n = 74 không thoả mãn )
Do đó n=37 hoặc n+1 = 37
Nếu n=37 thì n+1 = 38 lúc đó  không thoả mãn 
Nếu n+1=37 thì n = 36 lúc đó  thoả mãn 
Vậy số số hạng của tổng là 36

Bài 4:

Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).




10 tháng 9 2016

đúng rồi  , có thể kết bạn với  mình không 

a.

Chứng minh ΔCHO=ΔCFOΔCHO=ΔCFO (cạnh huyền – góc nhọn)

suy ra: CH = CF. Kết luận ΔFCHΔFCH cân tại C.

- Vẽ IG //AC (G ∈∈ FH). Chứng minh ΔFIGΔFIG cân tại I.

- Suy ra: AH = IG, và ∠IGK=∠AHK∠IGK=∠AHK.

- Chứng minh ΔAHK=ΔIGKΔAHK=ΔIGK (g-c-g).

- Suy ra AK = KI..

b.

Vẽ OE ⊥⊥ AB tại E. Tương tự câu a ta có: ΔAEH,ΔBEFΔAEH,ΔBEF thứ tự cân tại A, B. Suy ra: BE = BF và AE = AH.

BA = BE + EA = BF + AH = BF + FI = BI. Suy ra: ΔABIΔABI cân tại B.

Mà BO là phân giác góc B, và BK là đường trung tuyến của ΔABIΔABI nên: B, O, K là ba điểm thẳng hàng.

4 tháng 2 2019

bài 2b.

\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)

\(\Rightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=2019\)

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019\)

Với \(a< 0\left(a\in Z\right)\)ta có:\(\left|a\right|+a=-a+a=0⋮2\)

Với \(a=0\)ta có:\(\left|a\right|+a=0⋮2\)

Với \(a>0\)ta có:\(\left|a\right|+a=2a⋮2\)

Vậy với mọi số nguyên a thì ta luôn có:\(\left|a\right|+a⋮2\)

Áp dụng vào bài toán,ta được:\(\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x⋮2\)

\(\Rightarrow2019⋮2\)(vô lý)

Vậy không thể tồn tại số nguyên x,y,z thỏa mãn:\(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019\)