Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)
\(<=>2x(x-1)-3(x-1)=0\)
\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)
th2 \(X-1=0<=>x=1\)
pt có tập nghiệm S={3/2;1}
\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)
\(x-1=0\\ \Rightarrow x=1\)
\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)
Áp dụng quy tắc Horner , ta có :
Vậy , phaeps chia được thương bằng : x + 1
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
\(\dfrac{2x-6}{x+1}\ge0\)
`<=> 2x-6 >= 0`
`<=> 2x >=6`
`<=> x>=3`
Vật bpt đã cho có tập nghiệm \(S=\left\{x|x\ge3\right\}\)
Bài 60:
a: Xét ΔMNP có
B là trung điểm của NP
A là trung điểm của MN
Do đó: AB là đường trung bình của ΔMNP
Suy ra: AB//MP và \(AB=\dfrac{MP}{2}\)
hay MP=10cm
b: Xét tứ giác ABPM có AB//PM
nên ABPM là hình thang
mà \(\widehat{PMA}=90^0\)
nên ABPM là hình thang vuông
3:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc C chung
=>ΔACH đồng dạng vơi ΔBCA
b: Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC