K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

câu hỏi gì kì z

11 tháng 11 2017

Áp dụng quy tắc Horner , ta có :

a=-1 1 2 1 1 1 0 Vậy , phaeps chia được thương bằng : x + 1

a: Ta có: \(2x\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

b: Ta có: \(x^2\left(x-6\right)-x^2+36=0\)

\(\Leftrightarrow\left(x-6\right)\left(x^2-x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=3\\x=-2\end{matrix}\right.\)

9 tháng 10 2021

a)=\(3x^3-15x^2+21x\)

b)\(=-2x^4y-10x^2y+2xy\)

c)\(=-x^3+6x^2+5x-4x^2+24x+20=-x^3+2x^2+29x+20\)

d)\(=2x^4-3x^3+4x^2-2x^2+3x-4=2x^4-3x^32x^2+3x-4\)

e)\(=x^2-4y^2\)

f)\(=-2x^2y^3+y-3\)

g)\(=3xy^4-\dfrac{1}{2}y^2+2x^2y\)

h)\(=9x^2-6x+1-7x^2-14=2x^2-6x-13\)

i)\(=x^2-x-3\)

j)\(=\left(x+2y\right)\left(x^2-2y+4y^2\right):\left(x+2y\right)=x^2-2y+4y^2\)

24 tháng 10 2021

Tại sao ý b có dấu - trước ngoặc đâu mà đổi dấu mong bn giải đáp

1 tháng 9 2021

\(<=>2x^2-5x+3=0\)
<=>\(2x^2-2x-3x+3=0\)

\(<=>2x(x-1)-3(x-1)=0\)

\(<=>(2x-3)(x-1)=0\)
th1 \(2x-3=0<=>x=3/2\)

th2 \(X-1=0<=>x=1\)

pt có tập nghiệm S={3/2;1}

1 tháng 9 2021

\(2x^3+3x^2-8x+3=0\\ \Rightarrow\left(2x^3-2x^2\right)+\left(5x^2-5x\right)-\left(3x-3\right)=0\\ \Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)-3\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(2x^2+5x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\2x^2+5x-3=0\end{matrix}\right.\)

\(x-1=0\\ \Rightarrow x=1\)

\(2x^2+5x-3=0\\ \Rightarrow\left(2x^2+6x\right)-\left(x+3\right)=0\\ \Rightarrow2x\left(x+3\right)-\left(x+3\right)=0\\ \Rightarrow\left(x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{-3;\dfrac{1}{2};1\right\}\)

a) \(\left(x^2+2x+1\right)\left(x+1\right)\)

\(=x^3+x^2+2x^2+2x+x+1\)

\(=x^3+3x^2+3x+1\)

b) Ta có: \(\left(x^3-x^2+2x-1\right)\left(5-x\right)\)

\(=5x^3-x^4-5x^2+x^3+10x-2x^2-5+5x\)

\(=-x^4+6x^3-7x^2+15x-5\)

Ta có: \(\left(x-5\right)\left(x^3-x^2+2x-1\right)\)

\(=-\left(5-x\right)\left(x^3-x^2+2x-1\right)\)

\(=x^4-6x^3+7x^2-15x+5\)