Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý thôi.
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Rightarrow x^3-ax^2+bx-c\)có ba nghiệm \(x=a,x=b,x=c\)
Theo định lí Vi-et:\(\hept{\begin{cases}a+b+c=a\\ab+bc+ca=b\\abc=c\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\ab+bc+ca=b\\c\left(ab-1\right)=0\end{cases}}\)
Tam giác ABC có ba cạnh a,b,c và có chu vi bằng 1
=> \(a+b+c=1\)
=> \(\hept{\begin{cases}b+c=1-a\\a+c=1-b\\a+b=1-c\end{cases}}\)
Do đó ta viết lại đề bài thành \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)
Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)
Thật vậy, ta có :
\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)
\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)-3\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\cdot\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}-3\)( bất đẳng thức Cauchy )
\(=\frac{1}{2}\cdot9-3=\frac{3}{2}\)
Đẳng thức xảy ra <=> a = b = c
=> Tam giác ABC đều ( đpcm )
Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)Với (x,y,z>0) và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)
Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)
\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)
Dấu ''='' xảy ra khi và chỉ khi \(x=y=z\)
Với x = y = z thì \(a=b=c\)
=> \(\Delta ABC\) đều
Trieu Trong Thai
CM a3+b3+c2 >= ab+bc+ac (*)
2a^2 +2b^2 +2c^2 - 2ab -2bc -2ac = (a-b)^2 + (b-c)^2 + (a-c)^2 >= 0
từ * => a^2 +b^2+c^2 +2ab+2bc+2ac >= 3ab+3bc+3ac <=> (a+b+c)^2 >= 3ab +3ac+3bc
từ * => 2ab +2ac+2bc+ a^2+b^2+c^2 =< 3a^2+3b^2+3c^2 <=> (a+b+c)^2 =< ...
de bai sai sua lai la
\(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
bien doi ve phai ta co:
\(\left(a-b\right)\left(a+b\right)^2\)
\(=a^3+ab^2-a^2b-b^3\)
\(=a^3-b^3+ab\left(b-a\right)\)= ve trai
vay \(a^3-b^3+ab\left(b-a\right)=\left(a-b\right)\left(a+b\right)^2\)
\(a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(a^3-c^3\right)+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left[\left(a^3-b^3\right)+\left(b^3-c^3\right)\right]+c\left(a^3-b^3\right)\)
\(=a\left(b^3-c^3\right)-b\left(b^3-c^3\right)-b\left(a^3-b^3\right)+c\left(a^3-b^3\right)\)
\(=\left(b^3-c^3\right)\left(a-b\right)-\left(a^3-b^3\right)\left(b-c\right)\)
\(=\left(b-c\right)\left(b^2+bc+c^2\right)\left(a-b\right)-\left(a-b\right)\left(a^2+ab+b^2\right)\left(b-c\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(b^2+bc+c^2\right)-\left(a^2+ab+b^2\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(bc+c^2-a^2-ab\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[b\left(c-a\right)+\left(c-a\right)\left(c+a\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
a(b3−c3)+b(c3−a3)+c(a3−b3)
=a(b3−c3)−b(a3−c3)+c(a3−b3)
=a(b3−c3)−b[(a3−b3)+(b3−c3)]+c(a3−b3)
=a(b3−c3)−b(b3−c3)−b(a3−b3)+c(a3−b3)
=(b3−c3)(a−b)−(a3−b3)(b−c)
=(b−c)(b2+bc+c2)(a−b)−(a−b)(a2+ab+b2)(b−c)
=(a−b)(b−c)[(b2+bc+c2)−(a2+ab+b2)]
=(a−b)(b−c)(bc+c2−a2−ab)
=(a−b)(b−c)[b(c−a)+(c−a)(c+a)]
=(a−b)(b−c)(c−a)(a+b+c)
Bất đẳng thức này >=3/2!!!!!!!!!!!!!
\(\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1-3=\left(a+b+c\right)\cdot\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\)
áp dung cosy ta có \(x+y+z\ge3\sqrt[3]{x\cdot y\cdot z}\) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{x\cdot y\cdot z}}\)
\(\Rightarrow\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge\frac{9}{2\cdot\left(a+b+c\right)}\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)\ge\frac{9}{2}\)
\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{9}{2}-3=\frac{3}{2}\)
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)