Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow2a^3+8a-a^4-16\le0\)
\(\Leftrightarrow\left(2a^3-a^4\right)+\left(8a-16\right)\le0\)
\(\Leftrightarrow-a^3\left(a-2\right)+8\left(a-2\right)\le0\)
\(\Leftrightarrow-\left(a-2\right)\left(a^3-8\right)\le0\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)
TA THẤY : \(\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)\(\Leftrightarrow-\left(a-2\right)^2\left(a^2+2a+4\right)\le0\)\(\Leftrightarrow2a^3+8a\le a^4+16\left(dpcm\right)\)
DẤU " = " XẢY RA KHI X = 2
TK CHO MK NKA !!!
a)\(2a^3+8a\le a^4+16\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow a^3\left(a-2\right)-8\left(a-2\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a^3-8\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)\left(a-2\right)\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)(luôn đúng)
=>đpcm
Nhật Linh lm lun:))
\(a^2+2a+4=a^2+2a+1+3=\left(a+1\right)^2+3>0\left(đpcm\right)\)
\(\frac{a^2-5ab+4}{16-a^2}-\frac{2a}{2a^2+8a}\)
\(=\frac{a^2-5a+4}{\left(4-a\right)\left(4+a\right)}-\frac{2a}{2a\left(a+4\right)}\)
\(=\frac{a^2-5a+4-\left(4-a\right)}{\left(4-a\right)\left(4+a\right)}\)
\(=\frac{a^2-4a}{\left(4-a\right)\left(4+a\right)}=\frac{a\left(a-4\right)}{\left(4-a\right)\left(4+a\right)}=\frac{-a}{4+a}\)
PS:Quy đồng sai chỗ nào tự coi lại nhá
chiều dài tấm vải chính bằng tổng số mét vải đã bán (vì ở đề bài nói rằng ngày 3 bán nốt 40m)
a)\(a^4+16\ge2a^3+8a\)
\(\Leftrightarrow a^4-2a^3-8a+16\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(a^2+2a+4\right)\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(\left(a+1\right)^2+3\right)\ge0\)*Luôn đúng*
\("="\Leftrightarrow a=2\)
b)Cô si: \(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{ab}}\)
Nhân theo vế 2 BĐT trên ta đc ĐPCM
\("="\Leftrightarrow a=b\)
a, \(4abc-8ab^2c=4abc\left(1-2b\right)\)
b, \(x^2\left(2a-1\right)+x\left(1-2a\right)=x^2\left(2a-1\right)-x\left(2a-1\right)\)
\(=x\left(x-1\right)\left(2a-1\right)\)
c, \(9a^4\left(a-2\right)+a^2\left(a-2\right)=a^2\left(9a^2+1\right)\left(a-2\right)\)
d, \(\left(a-4\right)\left(2a-1\right)-8a+4=\left(a-4\right)\left(2a-1\right)-4\left(2a-1\right)\)
\(=\left(a-8\right)\left(2a-1\right)\)
a) `4abc-8ab^2c=4abc(1-2b)`
b) `x^2 (2a-1)+x(1-2a) = x^2 (2a-1) -x(2a-1) = (2a-1)(x^2-x)=x(2a-1)(x-1)`
c) `9a^4 (a-2) +a^2 (a-2) = (a-2)(9a^4+a^2)=a^2 (a-2)(9a^2+1)`
d) `(a-4)(2a-1)-8a+4=(a-4)(2a-1)-4(2a-1)=(2a-1)(a-8)`
A = (a^2+4).(a^2-4)/(a^4+4a^2)-(4a^3+16a)+(4a^2+16)
= (a^2+4).(a^2-4)/(a^2+4).(a^2-4a+4)
= (a^2+4).(a-2).(a+2)/(a^2+4).(a-2)^2
= a+2/a-2
Tk mk nha
chưng minh rằng ^ mọi a
Ta có : \((a^4+16)− ( 2 a ^3 + 8 a )\)
\(a ^4 + 16 − 2 a ^3 − 8 a\)
\(a ^4 + 16 − 2 ^3 − 8 a + 8 a ^2 − 8 a ^2\)
\((a^4-8a^2+16)-(2^3-8a^2+8a)\)
\(\left(a^2-4\right)^2-2a\left(a-2\right)^2\)
\(\left(a+2\right)^2\left(a-2\right)^2-2a\left(a-2\right)^2\)
\(\left(a-2\right)^2\left[\left(a+2\right)^2-2a\right]^{ }\)
\(( a − 2 ) 2 ( a ^2 + 4 a + 4 − 2 a )\)
\(( a − 2 ) ^2 ( a ^2 + 2 a + 4 )\)
\(( a − 2 ) ^2 [ ( a ^2 + 2 a + 1 ) + 3 ]\)
\(( a − 2 ) ^2 [ ( a + 2 ) ^2 + 3 ]\)
\(Vì\) \( ( a − ^2 ) 2 [ ( a + 2 ) ^2 + 3 ] ≥ 0\)
\( ( a ^4 + 16 ) − ( 2 a ^3 + 8 a ) ≥ 0\)
\(a ^4 + 16 ≥ 2 a ^3 + 8 a ( đ p c m )\)