Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
a, \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{200}-1\right)\)
\(-A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{200}\right)\)
\(-A=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{199}{200}\)
\(-A=\frac{1}{200}\)
\(A=\frac{-1}{200}>\frac{-1}{199}\)
Ta có: (a+b+c)2=a2+b2+c2
<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2
<=>ab+bc+ca=0
<=>\(\frac{ab+bc+ca}{abc}=0\)
<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)
<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)
Thay (1) vào (2) ta đc:
\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)
<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)
toán lớp 7 có cái này hả??
Ta có:\((a+b+c)^2=a^2+b^2+c^2\)
<=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)
<=>\(ab+ac+bc=0\)
Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên
Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)
Nhân với abc cả hai vế
\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)
<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)
mà ab+ac+bc=0
=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)
<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)
<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)
<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)
<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)
<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)
tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0
Ta có \(ab+ac+bc=0\)(1)
mà a,b,c khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)
=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)
=>\({1\over a}+ {1\over b}+ {1\over c}=0\)
Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được
a(1/b+1/c) + b(1/c+1/a) + c(1/b+1/a) = -2,
a^3 + b^3 + c^3 = 1.
CMR 1/a + 1/b + 1/c = 1