K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

Ta có: (a+b+c)2=a2+b2+c2

<=>a2+b2+c2+2ab+2bc+2ca=a2+b2+c2

<=>ab+bc+ca=0

<=>\(\frac{ab+bc+ca}{abc}=0\)

<=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

<=> \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\) (1)

<=> \(\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)

<=>\(\frac{1}{a^3}+\frac{3}{a^2b}+\frac{3}{ab^2}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{3}{ab}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{b^3}=-\frac{1}{c^3}\) (2)

Thay (1) vào (2) ta đc:

\(\frac{1}{a^3}-\frac{3}{abc}+\frac{1}{b^3}=-\frac{1}{c^3}\)

<=>\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\left(đpcm\right)\)

19 tháng 6 2018

toán lớp 7 có cái này hả??

Ta có:\((a+b+c)^2=a^2+b^2+c^2\)

      <=>\(a^2+b^2+c^2+2ab+2ac+2bc=a^2+b^2+c^2\)

      <=>\(ab+ac+bc=0\)

Phân tích ngược từ chứng minh. Lưu ý: cách này chỉ trình bày ngoài nháp rồi mới trình bày từ duới lên

Nếu \({1\over a^3} + {1\over b^3} +{1\over c^3}={3\over abc}\)

Nhân với abc cả hai vế

\({abc\over a^3} + {abc\over b^3} +{abc\over c^3}=3\)

<=>\({bc\over a^2} + {ac\over b^2} +{ab\over c^2}=3\)

mà ab+ac+bc=0 

=>\({-(ac+ab)\over a^2} + {-(bc+ba)\over b^2} +{-(ac+bc)\over c^2}=3\)

<=>\({-a(c+b)\over a^2} + {-b(c+a)\over b^2} +{-c(a+b)\over c^2}-3=0\)

<=>\({c+b\over a} + {c+a\over b} +{a+b\over c}+3=0\)

<=>\({c+b\over a} +1+ {c+a\over b} +1+{a+b\over c}+1=0\)

<=>\({c+b+a\over a} ++ {c+a+b\over b} +{a+b+c\over c}=0\)

<=>\((a+b+c)({1\over a}+{1\over b}+{1\over c})=0\)

tới đây không phải là ta có được 2 vế trên =0 . Mà phải chứng minh 1 trong 2 vế trên bằng 0 

Ta có \(ab+ac+bc=0\)(1)

mà a,b,c  khác 0 theo đề bài nên ta có quyền chia abc cho vế (1)

=>\({ab\over abc}+{cb\over abc}+{ac\over abc}=0\)

=>\({1\over a}+ {1\over b}+ {1\over c}=0\)

Vậy từ dữ kiện ta có thể suy ngược lại tất cả nãy giờ ta chúng minh được 

19 tháng 5 2021

Đặt ab = x, bc = y, ca = z     (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)

⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz

⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0

⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0

⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0

<=> x + y + z = 0   (1)        và           x^2 + y^2 + z^2 − xy − yz − xz = 0   (2)

Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0

P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1

Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0

⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0 

Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:

(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z

⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)

⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8 

Vậy...........

18 tháng 3 2020

a, Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\)\(\Rightarrow a=2k\)\(b=3k\)\(c=5k\)

Ta có: \(B=\frac{a+7b-2c}{3a+2b-c}=\frac{2k+7.3k-2.5k}{3.2k+2.3k-5k}=\frac{2k+21k-10k}{6k+6k-5k}=\frac{13k}{7k}=\frac{13}{7}\)

b, Ta có: \(\frac{1}{2a-1}=\frac{2}{3b-1}=\frac{3}{4c-1}\)\(\Rightarrow\frac{2a-1}{1}=\frac{3b-1}{2}=\frac{4c-1}{3}\)

\(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{1}=\frac{3\left(b-\frac{1}{3}\right)}{2}=\frac{4\left(c-\frac{1}{4}\right)}{3}\) \(\Rightarrow\frac{2\left(a-\frac{1}{2}\right)}{12}=\frac{3\left(b-\frac{1}{3}\right)}{2.12}=\frac{4\left(c-\frac{1}{4}\right)}{3.12}\)

\(\Rightarrow\frac{\left(a-\frac{1}{2}\right)}{6}=\frac{\left(b-\frac{1}{3}\right)}{8}=\frac{\left(c-\frac{1}{4}\right)}{9}\)\(\Rightarrow\frac{3\left(a-\frac{1}{2}\right)}{18}=\frac{2\left(b-\frac{1}{3}\right)}{16}=\frac{\left(c-\frac{1}{4}\right)}{9}\)

\(\Rightarrow\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3a-\frac{3}{2}}{18}=\frac{2b-\frac{2}{3}}{16}=\frac{c-\frac{1}{4}}{9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-\left(c-\frac{1}{4}\right)}{18+16-9}=\frac{3a-\frac{3}{2}+2b-\frac{2}{3}-c+\frac{1}{4}}{25}\)

\(=\frac{\left(3a+2b-c\right)-\left(\frac{3}{2}+\frac{2}{3}-\frac{1}{4}\right)}{25}=\left(4-\frac{23}{12}\right)\div25=\frac{25}{12}\times\frac{1}{25}=\frac{1}{12}\)

Do đó:  +)  \(\frac{a-\frac{1}{2}}{6}=\frac{1}{12}\)\(\Rightarrow a-\frac{1}{2}=\frac{6}{12}\)\(\Rightarrow a=1\)

+) \(\frac{b-\frac{1}{3}}{8}=\frac{1}{12}\)\(\Rightarrow b-\frac{1}{3}=\frac{8}{12}\)\(\Rightarrow b=1\)

+) \(\frac{c-\frac{1}{4}}{9}=\frac{1}{12}\)\(\Rightarrow c-\frac{1}{4}=\frac{9}{12}\)\(\Rightarrow c=1\)