Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hôm nay olm sẽ hướng dẫn các em mẹo giải các bài toán dạng này như sau:
Ta thấy vế phải là \(\dfrac{1}{2}\) thì vế trái sẽ ≤ \(\dfrac{1}{2}\) - a ( a > 0)
Em biến đổi mẫu số các phân số lần lượt thành lũy thừa của các số tự nhiên liên tiếp. Sau đó rút gọn tổng các phân số đó thì sẽ chứng minh được em nhé.
A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)
A = \(\dfrac{1}{\left(1.2\right)^2}\)+\(\dfrac{1}{\left(2.2\right)^2}\)+\(\dfrac{1}{\left(2.3\right)^2}\)+...+\(\dfrac{1}{\left(2.50\right)^2}\)
A = \(\dfrac{1}{1^2.2^2}\)+\(\dfrac{1}{2^2.2^2}\)+\(\dfrac{1}{2^2.3^2}\)+...+\(\dfrac{1}{2^2.50^2}\)
A = \(\dfrac{1}{2^2}\)\(\times\)(\(\dfrac{1}{1^2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{50^2}\))
A = \(\dfrac{1}{4}\) \(\times\)(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+...+\(\dfrac{1}{50.50}\))
Vì \(\dfrac{1}{1}\)> \(\dfrac{1}{2}\)>\(\dfrac{1}{3}\)>\(\dfrac{1}{4}\)>...>\(\dfrac{1}{50}\)
⇒ \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{50.50}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...\(\dfrac{1}{49.50}\)
A = \(\dfrac{1}{4}\).(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+..+\(\dfrac{1}{50.50}\)) < \(\dfrac{1}{4}\) .(1+\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+..+\(\dfrac{1}{49.50}\))
A < \(\dfrac{1}{4}\).(1+\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))
A<\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{50}\))
A < \(\dfrac{1}{2}\) - \(\dfrac{1}{200}\) < \(\dfrac{1}{2}\)
Vậy A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\) ( đpcm)
Ta thấy:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)
\(A< \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< \dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\Rightarrow A< 1\)
A=122+132+142+...+11002�=122+132+142+...+11002
A<11⋅2+12⋅3+13⋅4+...+199⋅100�<11⋅2+12⋅3+13⋅4+...+199⋅100
A<11−12+12−13+13−14+...+199−1100�<11−12+12−13+13−14+...+199−1100
A<1−1100�<1−1100
A<99100�<99100
Mà 99100<1⇒A<1
a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)
\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)
\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)
\(\Rightarrow M=1-\frac{1}{2016^2}\)<1
=>(DPCM)
CÂU b và c làm tương tự
\(A = \dfrac{1}{2^2} + \dfrac{1}{4^2} +\dfrac{1}{6^2} +...... +\dfrac{1}{100^2} \)
\(A = \dfrac{1}{1^2.2^2} +\dfrac{1}{2^2.2^2} +\dfrac{1}{2^2.3^2} + .......+\dfrac{1}{2^2.2^{50}}\)
\(A = \dfrac{1}{2^2}.(\) \( \dfrac{1}{1^2} + \dfrac{1}{2^2} +\dfrac{1}{3^2} +...... +\dfrac{1}{50^2}) \)
\(A < \dfrac{1}{2^2}.( \dfrac{1}{1.2}+\dfrac{1}{2.3}+......+\dfrac{1}{49.50}\) \()\)
\(= \dfrac{1}{2^2}.(1-\dfrac{1}{2} + \dfrac{1}{2}-\dfrac{1}{3}+.......+\dfrac{1}{49}-\dfrac{1}{50})\)
\(= \dfrac{1}{2^2} . ( 1 - \dfrac{1}{50})\)
\(< \dfrac{1}{2^2} . 2 = \dfrac{1}{2}\)