K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Đáp án B

 => Đường thẳng AB có pt là: x- y – 5= 0.

Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).

Ta có: 

Vậy C( 1 ; -1) và  C( -2 ; 10)

b: Tọa độ điểm A là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}-x+1=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)

Tọa độ điểm B là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=-1\\-x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=2\end{matrix}\right.\)

Tọa độ điểm C là nghiệm của hệ phương trình:

\(\left\{{}\begin{matrix}y=-1\\x+1=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

21 tháng 1 2021

a, Gọi \(I\left(x;y\right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\)

\(\Rightarrow\left\{{}\begin{matrix}IA=IB\\IA=IC\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}IA^2=IB^2\\IA^2=IC^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-3-x\right)^2+\left(6-y\right)^2=\left(1-x\right)^2+\left(-2-y\right)^2\\\left(-3-x\right)^2+\left(6-y\right)^2=\left(6-x\right)^2+\left(3-y\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2y=-5\\3x-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

21 tháng 1 2021

Còn phần b,c,d,e nx bn C:

14 tháng 4 2017

Đáp án B

Gọi hình bình hành là ABCD

d:x+ y-1 = 0, : 3x – y+ 5= 0  .

Không làm mất tính tổng quát giả sử

 

Ta có :  I(3;3)  là tâm hình bình hành nên C(7;4)  

=> Đường thẳng ACcó pt là: x- 4y + 9= 0.

Do  => Đường thẳng BC đi qua điểm C và có vtpt  có pt là: 3x – y- 17= 0.

Khi đó :

Ta có:

4 tháng 5 2021

b, \(d\left(I;\Delta\right)=R\Leftrightarrow\dfrac{\left|-2+6+m\right|}{\sqrt{13}}=\sqrt{13}\)

\(\Rightarrow\left[{}\begin{matrix}m=9\\m=-17\end{matrix}\right.\)

 

4 tháng 5 2021

c, Dễ tìm được tọa độ A, B: \(\left\{{}\begin{matrix}A=\left(-3,-1\right)\\B=\left(2,0\right)\end{matrix}\right.\)

Phương trình tiếp tuyến tại A có dạng: \(\Delta_1:ax+by+3a+b=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I,\Delta_1\right)=\dfrac{\left|-a+2b+3a+b\right|}{\sqrt{a^2+b^2}}=\sqrt{13}\)

\(\Leftrightarrow\left(2a+3b\right)^2=13a^2+13b^2\)

\(\Leftrightarrow4a^2+9b^2+12ab=13a^2+13b^2\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow9a^2+4b^2-12ab=0\)

\(\Leftrightarrow3a=2b\)

\(\Rightarrow\Delta_1:2x+3y+9=0\)

Tương tự tiếp tuyến tại B: \(\Delta_2:3x-2y-6=0\)

1. Viết phương trình chính tắc của đường thẳng d đi qua điểm M ( 1 ; -3 ) và nhận vectơ u ( 1 ; 2 ) làm vectơ chỉ phương . 2. Cho đường thẳng ( d ) : x - 2y + 1 = 0 . Đường thẳng ( d' ) đi qua M ( 1 ; -1 ) và song song với ( d ) có phương trình là gì ? 3. Cho tam giác ABC có A ( -2 ; 0 ) , B ( 0 ; 3 ) , C ( 3 ; 1 ) . Đường thẳng đi qua B và song song với AC có phương trình là gì ? 4. Phương...
Đọc tiếp

1. Viết phương trình chính tắc của đường thẳng d đi qua điểm M ( 1 ; -3 ) và nhận vectơ u ( 1 ; 2 ) làm vectơ chỉ phương .

2. Cho đường thẳng ( d ) : x - 2y + 1 = 0 . Đường thẳng ( d' ) đi qua M ( 1 ; -1 ) và song song với ( d ) có phương trình là gì ?

3. Cho tam giác ABC có A ( -2 ; 0 ) , B ( 0 ; 3 ) , C ( 3 ; 1 ) . Đường thẳng đi qua B và song song với AC có phương trình là gì ?

4. Phương trình tham số của đường thẳng ( d ) đi qua điểm M ( -2 ; 3 ) và vuông góc với đường thẳng ( d' ) : 3x - 4y + 1 = 0 là gì ?

5. Cho tam giác ABC có A ( 2 ; -1 ) , B ( 4 ; 5 ) , C ( -3 ; 2 ) . Phương trình tổng quát của đường cao AH của tam giác ABC là gì ?

6. Viết phương trình tổng quát của đường thẳng ( d ) biết ( d ) đi qua điểm M ( 1 ; 2 ) và có hệ số góc k = 3 .

7. Viết phương trình đường thẳng ( d ) biết ( d ) đi qua điểm M ( 2 ; -5 ) và có hệ số góc k = -2 .

8. Phương trình đường thẳng đi qua hai điểm A ( -2 ; 4 ) và B ( -6 ; 1 ) là gì ?

9. Cho tam giác ABC có A ( -1 ; -2 ) , B ( 0 ; 2 ) , C ( -2 ; 1 ) . Đường trung tuyến BM có phương trình là gì ?

10. Cho điểm A ( 1 ; -1 ) , B ( 3 ; -5 ) . Viết phương trình tham số đường trung trực của đoạn thẳng AB .

0