Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng đi qua gốc tọa độ có dạng y = ax + b
Với a = 1/2 ta có hàm sô: y = 1/2.x
Với a = -2 ta có hàm số: y = -2x
*Vẽ đồ thị hàm số y = 1/2.x
Cho x = 0 thì y = 0. Ta có: O(0; 0)
Cho x = 2 thì y = 1. Ta có: A(2; 1)
Đồ thị hàm số y = 1/2.x đi qua O và A
*Vẽ đồ thị hàm số y = -2x
Cho x = 0 thì y = 0. Ta có: O(0; 0)
Cho x = 1 thì y = -2. Ta có: B(1; -2)
Đồ thị hàm số y = -2x đi qua O và B.
*Gọi A’, B’ lần lượt là hình chiếu của A, B trên Ox và Oy.
Ta có hai tam giác AA’O và BB’O có hai cạnh góc vuông tương ứng bằng nhau nên chúng bằng nhau.
Vậy OA ⊥ OB hay hai đường thẳng y = 1/2.x và y = -2x vuông góc với nhau.
a)Gọi pt đường thẳng d là: \(y=ax+b\left(a\ne0\right)\)
Vì d có hệ số góc là k \(\Rightarrow a=k\)
Vì (d) đi qua điểm \(A\left(-2;-1\right)\Rightarrow-1=-2k+b\Rightarrow b=\dfrac{1}{2k}\)
\(\Rightarrow\left(d\right):y=kx+\dfrac{1}{2k}\)
b) Vì điểm \(B\in\left(P\right)\Rightarrow y_B=-2x_B^2=-2\Rightarrow B\left(1;-2\right)\)
\(\Rightarrow-2=k+\dfrac{1}{2k}\Leftrightarrow-2=\dfrac{2k^2+1}{2k}\Rightarrow-4k=2k^2+1\)
\(\Rightarrow2k^2+4k+1=0\)
\(\Delta=4^2-4.2=8\)
\(\Rightarrow\left[{}\begin{matrix}k=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-4-\sqrt{8}}{4}=\dfrac{-2-\sqrt{2}}{2}\\k=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-4+\sqrt{8}}{4}=\dfrac{-2+\sqrt{2}}{2}\end{matrix}\right.\)
Đường thẳng đi qua gốc tọa độ có dạng y = ax + b
Vì đường thẳng y = ax đi qua điểm A(2; 1) nên tọa độ điểm A nghiệm đúng phương trình đường thẳng.
Ta có: 1 = a.2 ⇔ a = 1/2
Vậy hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm A(2; 1) là a = 1/2
a: Thay x=-2 và y=4 vào (P), ta được:
4a=4
hay a=1
b: Vì (d) đi qua O(0;0) và N(2;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=0\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\)
Vì (d) đi qua gốc tọa độ nên (d): y=ax
a: Thay x=3 và y=1 vào (d), ta được
3a=1
hay a=1/3
b: Thay x=1 và y=-3 vào (d), ta được:
\(a\cdot1=-3\)
hay a=-3
ĐTHS