Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Xét Ix-1I + Ix-5I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-1|+|x-5|\ge|x-1-x+5|=4\)
Dấu "=" xảy ra khi (x-1)(x-5) \(\le\)0
+) Xét Ix-2I + Ix-4I
Áp dụng BĐT: \(|a|+|b|\)\(\ge\)\(|a-b|\),ta có:
\(|x-2|+|x-4|\ge|x-2-x+4|=2\)
Dấu "=" xảy ra khi (x-2)(x-4) \(\le\)0
+) Xét Ix-3I
Vì Ix-3I\(\ge\)0
Dấu "=' xảy ra khi x-3=0 hay x=3
Suy ra: A = Ix-1I + Ix-2I + Ix-3I + Ix-4I + Ix-5I + 2019 \(\ge\)4+2+0+2019 = 2025
Dấu"=" xảy ra khi x=3
Vậy gtnn của A là 2025 tại x=3
khi làm bài dạng này cần xét từng cặp có độ "chênh đơn vị" nhỏ dần,rồi đến cái cuối cùng xét riêng nó lấy x,đó là gt đúng của x
\(a)\) Ta có :
\(x^2\ge0\)
\(\Rightarrow\)\(A=x^2+3\ge3\)
Dấu "=" xảy ra khi và chỉ khi \(x^2=0\)
\(\Leftrightarrow\)\(x=0\)
Vậy GTNN của \(A\) là \(3\) khi \(x=0\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\left(x+3\right)^2\ge0\)
\(\Rightarrow\)\(B=\left(x+3\right)^2+9\ge9\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+3\right)^2=0\)
\(\Leftrightarrow\)\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy GTNN của \(B\) là \(9\) khi \(x=-3\)
Chúc bạn học tốt ~
a) M = 5 + |x - 0,5|
Ta có: M = 5 + |x - 0,5| > hoặc = 5
Dấu "=" xảy ra khi và chỉ khi x = 0,5
Vậy GTNN của M là 5 khi và chỉ khi x = 0,5
b) N = -3 - |x - 4|
Ta có: N = -3 - |x - 4| < hoặc = -3
Dấu "=" xảy ra khi và chỉ khi x = 4
Vậy GTLN của N là -3 khi và chỉ khi x = 4
a. \(M=5+\left|x-0,5\right|\) . Có:
\(\left|x-0,5\right|\ge0\)
\(\Rightarrow M=5+\left|x-0,5\right|\ge5\)
Dấu = xảy ra khi: \(x-0,5=0\Rightarrow x=0,5\)
Vậy: \(Min_M=5\) tại \(x=0,5\)
b. \(N=-3-\left|x-4\right|\) . Có:
\(\left|x-4\right|\ge0\)
\(\Rightarrow N=-3-\left|x-4\right|\le-3\)
Dấu = xảy ra khi: \(x-4=0\Rightarrow x=4\)
Vậy: \(Max_N=-3\) tại \(x=4\)
1) Nếu x<-2 => -x+3-x-2=1 => -2x =0 => x =0 loại
Nếu -2</ x < 3 => -x+3 +x+2 =1 => 5=1 loại
Nếu x >/ 3 => x-3 + x+2 =1 => 2x =2 => x =1 loại
Vậy không có x nào thỏa mãn
2) C không có GTNN
D= /x -2 / + / 8 -x/ >/ /x-2+8 -x / = /6/ = 6
D min = 6 khi 2</ x </ 8
lm giúp mik nhé!!!!
Bài giải
Ta có : \(D=\frac{x-4}{x-3}=\frac{x-3-1}{x-3}=1-\frac{1}{x-3}\)
\(\Rightarrow\text{ D đạt GTNN khi }\frac{1}{x-3}\text{ đạt GTLN}\)
\(\Rightarrow\text{ }x-3\text{ đạt giá trị là số nguyên dương nhỏ nhất }\Rightarrow\text{ }x-3=1\text{ }\Rightarrow\text{ }x=4\)
\(\Rightarrow\text{ }A=\frac{x-4}{x-3}\ge0\)
\(\Rightarrow\text{ }Min\text{ }D=0\)