K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

a) M = 5 + |x - 0,5|

Ta có: M = 5 + |x - 0,5| > hoặc = 5

Dấu "=" xảy ra khi và chỉ khi x = 0,5

Vậy GTNN của M là 5 khi và chỉ khi x = 0,5

b) N = -3 - |x - 4|

Ta có: N = -3 - |x - 4| < hoặc = -3

Dấu "=" xảy ra khi và chỉ khi x = 4

Vậy GTLN của N là -3 khi và chỉ khi x = 4

24 tháng 8 2016

a. \(M=5+\left|x-0,5\right|\) . Có:

\(\left|x-0,5\right|\ge0\)

\(\Rightarrow M=5+\left|x-0,5\right|\ge5\)

Dấu = xảy ra khi: \(x-0,5=0\Rightarrow x=0,5\)

Vậy: \(Min_M=5\) tại \(x=0,5\)

b. \(N=-3-\left|x-4\right|\) . Có:

\(\left|x-4\right|\ge0\)

\(\Rightarrow N=-3-\left|x-4\right|\le-3\)

Dấu = xảy ra khi: \(x-4=0\Rightarrow x=4\)

Vậy: \(Max_N=-3\) tại \(x=4\)

10 tháng 11 2019

a)Vì  \(|x-2|\ge0;\forall x\)

\(\Rightarrow|x-2|+5\ge0+5;\forall x\)

Hay \(A\ge5;\forall x\)

Dấu"="xảy ra \(\Leftrightarrow|x-2|=0\)

                      \(\Leftrightarrow x=2\)

Vậy \(A_{min}=5\)\(\Leftrightarrow x=2\)

b) Vì \(-|x+4|\le0;\forall x\)

\(\Rightarrow12-|x+4|\le12;\forall x\)

Hay \(B\le12;\forall x\)

Dấu"=" xayra \(\Leftrightarrow|x+4|=0\)

                       \(\Leftrightarrow x=-4\)

Vậy MAX \(B=12\)\(\Leftrightarrow x=-4\)

a, Ta có :

\(\left|x-2\right|\ge0\forall x\)

\(\Rightarrow\left|x-2\right|+5\ge5\forall x\)

Mà \(A=\left|x-2\right|+5\)

\(\Rightarrow A\ge5\forall x\)

\(\Rightarrow MinA=5\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy \(MinA=5\Leftrightarrow x=2\)

12 tháng 10 2021

\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)

12 tháng 10 2021

a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2

Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔  x = - 1,5

Vậy Bmin=  4,2 ⇔ x= -1,5

b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)

Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)

Vậy Cmax \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)