K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

a)\(n^3+6n^2+8n=n\left(n+2\right)\left(n+4\right)\)

đầu tiên bạn chứng minh nó chia hết cho 16, rồi chia hết cho 3, gộp lại thành ra chia hết cho 48, mình ngại ghi lắm :v

b)\(a\left(a+2\right)+b\left(b-2\right)-2ab=63\)

<=>\(a^2+2a+b^2-2b-2ab=63\)

<=>\(\left(a^2-2ab+b^2\right)+\left(2a-2b\right)=63\)

<=>\(\left(a-b\right)^2+2\left(a-b\right)=63\)

<=>\(\left(a-b\right)\left(a-b+2\right)=63=7.9\)

<=> a - b = 7

31 tháng 1 2017

a,n3+6n2+8n=n3+2n2+4n2+8n=n2(n+2)+4n(n+2)=(n+2)(n2+4n)=n(n+2)(n+4)

dễ thấy đây là tích 2 số chẵn liên tiếp ,trong 3 số chẵn liên tiếp luôn có 1 số chia hết cho 4 

=>n(n+2)(n+4) chia hết cho 16

n chẵn nên n chia 3 dư 1 hoặc n chia 3 dư 2

+n chia 3 dư 1 => n+2 chia hết cho 3

+n chia 3 dư 2 =>n+4 chia hết cho 3

=> n(n+2)(n+3) chia hết cho 3

Tóm lại n3+6n2+8n chia heêtt1 cho 3.16=48

31 tháng 1 2017

hình như mk làm chưa logic lắm,để làm lại:

Vì n chẵn =>n=2k

n3+6n2+8n=(2k)3+6(2k)2+8.2k=8k3+24k2+16k=8k(k2+3k+2)=8k(k+1)(k+2)

Vì k,k+1,k+2 là 3 SN liên tiếp nên tích của chúng chia hết cho 2 và 3 ,mà (2;3)=1 =>tích của chúng cũng chia hết cho 6

=>8k(k+1)(k+2) chia hết cho 8.6=48

2 tháng 11 2021

a, Để \(P\left(x\right)⋮Q\left(x\right)\Leftrightarrow P\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-\dfrac{5}{4}-2+a=0\Leftrightarrow a=\dfrac{51}{16}\)

b, \(n^3+6n^2+8n=n\left(n^2+6n+8\right)=n\left(n+2\right)\left(n+4\right)\)

Với n chẵn thì 3 số này là 3 số chẵn lt nên chia hết cho \(2\cdot4\cdot6=48\)

2 tháng 11 2021

https://meet.google.com/zvs-pdqd-skj?authuser=0&hl=vi. vào link ik

18 tháng 3 2018

a)Đặt \(A=n^3+6n^2+8n\)

\(A=n\left(n^2+6n+8\right)\)

\(A=n\left(n^2+2n+4n+8\right)\)

\(A=n\left[n\left(n+2\right)+4\left(n+2\right)\right]\)

\(A=n\left(n+2\right)\left(n+4\right)⋮\forall n\) chẵn

b)Đặt \(B=n^4-10n^2+9\)

\(B=n^4-n^2-9n^2+9\)

\(B=n^2\left(n^2-1\right)-9\left(n^2-1\right)\)

\(B=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)⋮384\forall n\) lẻ

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

21 tháng 10 2015

2009^2010đồng dư với 1 (theo mod 2010)

23 tháng 1 2018

là 10 nhé

21 tháng 10 2017

b) n3 + 6n2 + 8n

= n( n2 + 6n + 8)

= n( n2 + 2n + 4n + 8)

= n[ n( n +2) + 4( n +2)]

= n( n +2)( n + 4)

Do n chẵn nên ta đặt : 2k = n

Ta có : 2k( 2k +2)( 2k +4)

= 2k.2( k +1)2( k +2)

= 8k( k + 1)( k +2)

Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3

Suy ra : k( k + 1)( k +2) chia hết cho 6

Suy ra : 8k( k + 1)( k +2) chia hết cho 48


16 tháng 3 2019

a) 24= 2.3.4

(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)

=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)

Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4

Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4

14 tháng 10 2017

\(a,n^3+6n^2+8n\)

\(=n\left(n^2+6n+8\right)\)

\(=n\left(n^2+4n+2n+8\right)\)

\(=n\left[\left(n^2+4n\right)+\left(2n+8\right)\right]\)

\(=n\left[n\left(n+4\right)+2\left(n+4\right)\right]\)

\(=n\left(n+2\right)\left(n+4\right)\)

Vì n chẵn ,đây là tích của ba số chẵn liên tiếp => chia hết cho 48

b, tương tự a