K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2015

ta có

với x=0 pt trở thành \(8^0+18^0=2.27^0\Rightarrow1+1=2\left(ld\right)\)

\(f\left(x\right)=8^x+18^x\)

ta tính \(f'\left(x\right)=ln8.8^x+ln18.18^x>0\)

hàm số f(x) luôn đồng biến 

mặt khác \(y=2.27^x\)có \(y'=2.ln27.27^x>0\) hàm số y luôn đồng biến

suy ra nghiệm của pt x=0

NV
31 tháng 8 2021

Chia 2 vế cho \(27^x\) ta được:

\(3\left(\dfrac{8}{27}\right)^x+4\left(\dfrac{12}{27}\right)^x-\left(\dfrac{18}{27}\right)^x-2=0\)

\(\Leftrightarrow3\left(\dfrac{2}{3}\right)^{3x}+4\left(\dfrac{2}{3}\right)^{2x}-\left(\dfrac{2}{3}\right)^x-2=0\)

Đặt \(\left(\dfrac{2}{3}\right)^x=t>0\)

\(\Rightarrow3t^3+4t^2-t-2=0\)

\(\Leftrightarrow\left(t+1\right)^2\left(3t-2\right)=0\)

\(\Rightarrow t=\dfrac{2}{3}\Rightarrow\left(\dfrac{2}{3}\right)^x=\dfrac{2}{3}\)

\(\Rightarrow x=1\)

28 tháng 3 2016

d) Phương trình đã cho tương đương với :

\(2^{3x}+2^x.3^{2x}=2.3^{2x}\Leftrightarrow\left(\frac{2}{3}\right)^{2x}+\left(\frac{2}{3}\right)^x-2=0\)

Đặt  \(t=\left(\frac{2}{3}\right)^x,\left(t>0\right)\) Phương trình trở thành 

\(t^3+t-2=0\) hay \(\left(t-1\right)\left(t^2+t+2\right)=0\)

Do \(t^2+t+2=\left(t+\frac{1}{2}\right)^2+\frac{7}{4}>0\) nên \(t-1=0\) hay t=1

Từ đó suy ra \(\left(\frac{2}{3}\right)^x=1=\left(\frac{2}{3}\right)^0\Leftrightarrow x=0\)

Vậy phương trình có nghiệm duy nhất \(x=0\)

28 tháng 3 2016

c) Điều kiện \(x\ne0\). Chia cả 2 vế của phương trình cho \(6^{\frac{1}{x}}>0\), ta có :

\(6.\left(\frac{3}{2}\right)^{\frac{1}{x}}-13.1+6\left(\frac{2}{3}\right)^{\frac{1}{x}}=0\)

Đặt \(t=\left(\frac{3}{2}\right)^{\frac{1}{x}},\left(t>0\right)\)

Phương trình trở thành 

\(6t-13+\frac{6}{t}=0\) hay \(6t^2-13t+6=0\)

Phương trình bậc 2 trên có 2 nghiệm dương \(t=\frac{3}{2},t=\frac{2}{3}\)

Với \(t=\frac{3}{2}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{3}{2}\Leftrightarrow\frac{1}{x}=1\Leftrightarrow x=1\)

Với \(t=\frac{2}{3}\) thì \(\left(\frac{3}{2}\right)^{\frac{1}{x}}=\frac{2}{3}\Leftrightarrow\frac{1}{x}=-1\Leftrightarrow x=-1\)

Phương trình có 2 nghiệm dương \(x=1,x=-1\)Với 

 

25 tháng 3 2016

a) Xét phương trình \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)

Ta có \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2a\ge0\) với mọi a

Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lĩ)

Vậy \(\Delta'>0\Rightarrow f'\left(x\right)=0\) có 2 nghiệm \(x_1,x_2\) và hàm số có cực đại và cực tiểu

b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a;x_1x_2=-4\left(1+\cos2a\right)\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)\)

                                                 \(=9+8\cos^2a-6\sin a\cos a\)

                                  \(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2\)   

                                  \(=18-\left(3\sin a+\cos a\right)^2\le18\)          

NV
16 tháng 3 2019

Mặt cầu (S) có tâm \(I\left(1;0;0\right)\) bán kính \(R=1\)

Do mặt phẳng (P) song song với (Q)

\(\Rightarrow\) Phương trình (P) có dạng: \(5x-12z+a=0\)

Do (P) tiếp xúc với (S) \(\Rightarrow d\left(I;\left(P\right)\right)=R\)

\(\Rightarrow\frac{\left|5.1+0.0-12.0+a\right|}{\sqrt{5^2+0^2+\left(-12\right)^2}}=1\Leftrightarrow\left|a+5\right|=13\Rightarrow\left[{}\begin{matrix}a=8\\a=-18\end{matrix}\right.\)

\(\Rightarrow\) Có hai pt (P) thỏa mãn: \(\left[{}\begin{matrix}5x-12z+8=0\\5x-12z-18=0\end{matrix}\right.\)

Đáp án A

NV
28 tháng 3 2019

Câu 1: Xét trên miền [1;4]

Do \(f\left(x\right)\) đồng biến \(\Rightarrow f'\left(x\right)\ge0\)

\(x\left(1+2f\left(x\right)\right)=\left[f'\left(x\right)\right]^2\Leftrightarrow x=\frac{\left[f'\left(x\right)\right]^2}{1+2f\left(x\right)}\Leftrightarrow\frac{f'\left(x\right)}{\sqrt{1+2f\left(x\right)}}=\sqrt{x}\)

Lấy nguyên hàm 2 vế:

\(\int\frac{f'\left(x\right)dx}{\sqrt{1+2f\left(x\right)}}=\int\sqrt{x}dx\Leftrightarrow\int\left(1+2f\left(x\right)\right)^{-\frac{1}{2}}d\left(f\left(x\right)\right)=\int x^{\frac{1}{2}}dx\)

\(\Leftrightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+C\)

Do \(f\left(1\right)=\frac{3}{2}\Rightarrow\sqrt{1+2.\frac{3}{2}}=\frac{2}{3}.1\sqrt{1}+C\Rightarrow C=\frac{4}{3}\)

\(\Rightarrow\sqrt{1+2f\left(x\right)}=\frac{2}{3}x\sqrt{x}+\frac{4}{3}\)

Đến đây có thể bình phương chuyển vế tìm hàm \(f\left(x\right)\) chính xác, nhưng dài, thay luôn \(x=4\) vào ta được:

\(\sqrt{1+2f\left(4\right)}=\frac{2}{3}4.\sqrt{4}+\frac{4}{3}=\frac{20}{3}\Rightarrow f\left(4\right)=\frac{\left(\frac{20}{3}\right)^2-1}{2}=\frac{391}{18}\)

NV
28 tháng 3 2019

Câu 2:

Diện tích hình phẳng cần tìm là hai miền đối xứng qua Oy nên ta chỉ cần tính trên miền \(x\ge0\)

Hoành độ giao điểm: \(sinx=x-\pi\Rightarrow x=\pi\)

\(S=2\int\limits^{\pi}_0\left(sinx-x+\pi\right)dx=4+\pi^2\Rightarrow\left\{{}\begin{matrix}a=4\\b=1\end{matrix}\right.\)

\(\Rightarrow2a+b^3=9\)

29 tháng 3 2016

Viết phương trình về dạng

\(\frac{2^x}{3^x+4^x}-\frac{4^x}{9^x+16^x}=\frac{-5}{2x}\) hay \(\frac{2^x}{3^x+4^x}+\frac{5}{x}=\frac{2^{2x}}{3^{2x}+4^{2x}}+\frac{5}{2x}\)

Xét hàm số \(f\left(t\right)=\frac{2^t}{3^t+4^t}+\frac{5}{t}\) luôn đồng biến

Đáp số : Phương trình vô nghiệm