Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để y nguyên thì \(6x-4⋮2x+3\)
\(\Leftrightarrow-13⋮2x+3\)
\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)
\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)
hay \(x\in\left\{-1;-2;5;-8\right\}\)
\(y=\dfrac{2\left(2x+5\right)-18}{2x+5}=2-\dfrac{18}{2x+5}\)
\(y\in Z\Rightarrow\dfrac{18}{2x+5}\in Z\Rightarrow2x+5=Ư\left(18\right)\)
Mà 2x+5 luôn lẻ nên ta có: \(2x+5=\left\{-9;-3;-1;1;3;9\right\}\)
2x+5 | -9 | -3 | -1 | 1 | 3 | 9 |
x | -7 | -4 | -3 | -2 | -1 | 2 |
y | 4 | 8 | 20 | -16 | -4 | 0 |
c, x/2+1/y=1/3 (x,y∈Z)
⇒1/y=1/3-x/2
⇒1/y=2-3x/6
⇒y(2-3x)=6
⇒y∈Ư(6)∈{1;-1;2;-2;3;-3;6;-6}
y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
2-3x | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
3x | -4 | 8 | -1 | 5 | 0 | 4 | 1 | 3 |
x | -4/3 (loại) | 8/3(loại) | -1/3(loại) | 5/3(loại) | 0 | 4/3(loại) | 1/3(loại) | 1
|
Vậy các cặp (x;y) thỏa mãn pt trên là (0;3);(1;-6)
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Lời giải:
$\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:
$x=2k; y=3k$
Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.
$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$
\(\dfrac{3x-2y}{4}=\dfrac{4y-3z}{2}=\dfrac{2z-4x}{3}=\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\\ \Leftrightarrow\left\{{}\begin{matrix}3x-2y=0\\2z-4x=0\\4y-3z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{y}{3}=\dfrac{z}{4}\\\dfrac{z}{4}=\dfrac{x}{2}\end{matrix}\right.\\ \Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-2y+3z}{2-6+12}=\dfrac{8}{8}=1\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\\z=4\end{matrix}\right.\)