K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2022

Lời giải:

 $\frac{x}{y}=\frac{2}{3}\Rightarrow \frac{x}{2}=\frac{y}{3}$. Đặt $\frac{x}{2}=\frac{y}{3}=k$ thì:

$x=2k; y=3k$

Khi đó: $3x-2y=3.2k-3.2k=0$. Mẫu số không thể bằng $0$ nên $A$ không xác định. Bạn xem lại.

$B=\frac{2(2k)^2-2k.3k+3(3k)^2}{3(2k)^2+2.2k.3k+(3k)^2}=\frac{29k^2}{33k^2}=\frac{29}{33}$

7 tháng 3 2022

2x−3y/5=5y−2z/3=3z−5x/2=10x-15y/25=15y-6z/9=6z-10x/4=...+..+..../25+9+4=0/31=0

=> 2x=3y;  5y=2z ;  3z=5x => x/3=y/2; y/2=z/5

=> x/3=y/2 =z/5 = 12x/36=5y/10=3z/15= (12x+5y-3z)/31

      x/3 = 3y/6=2z/10 = (x-3y+2z)/7

=>  (12x+5y-3z)/ (x-3y+2z)=31/7

Thay \(x=\dfrac{1}{2};y=-1\) vào B, ta được:

\(B=\left[\left(\dfrac{1}{2}\right)^3-4\cdot\left(\dfrac{1}{2}\right)^2\cdot\left(-1\right)+3\cdot\left(-1\right)^2-4\right]:\left[3\cdot\left(\dfrac{1}{2}\right)^3-3\cdot\left(-1\right)^2-3\cdot\left(-1\right)\right]\)

\(=\left(\dfrac{1}{8}+4\cdot\dfrac{1}{4}+3\cdot1-4\right):\left(3\cdot\dfrac{1}{8}-3\cdot1+3\right)\)

\(=\left(\dfrac{1}{8}+1+3-4\right):\left(\dfrac{3}{8}-3+3\right)\)

\(=\dfrac{1}{8}\cdot\dfrac{8}{3}=\dfrac{1}{3}\)

28 tháng 5 2018

\(a,Đặt\dfrac{x}{y}=\dfrac{2}{3}\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\\ A=\dfrac{2x-3y}{x-5y}=\dfrac{2\cdot2k-3\cdot3k}{2k-5\cdot3k}\\ =\dfrac{4k-9k}{2k-15k} \\ =\dfrac{5k}{13k}\\ =\dfrac{5}{13}\)

\(b,Thayx-y=7vàoB,tacó:\\ B=\dfrac{2x+7}{3x-y}+\dfrac{2y-7}{3y-x}\\ =\dfrac{2x+x-y}{3x-y}+\dfrac{2y-x+y}{3y-x}\\ =\dfrac{3x-y}{3x-y}+\dfrac{3y-x}{3y-x}\\ =1+1\\ =2\)

\(c,Đặt\dfrac{x}{3}=\dfrac{y}{5}=k\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=5k\end{matrix}\right.\\ C=\dfrac{5x^2+3y^2}{10x^2-3y^2}\\ =\dfrac{5\left(3k\right)^2+3\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}\\ =\dfrac{45k^2+75k^2}{90k^2-75k^2}\\ =\dfrac{120k^2}{15k^2}\\ =8\)

\(d,\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=k\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=7k\end{matrix}\right.\\ D=\dfrac{5a-b}{3a-2b}\\ =\dfrac{5\cdot5k-7k}{3\cdot5k-2\cdot7k}\\ =\dfrac{25k-7k}{15k-14k}\\ =\dfrac{18k}{k}=18\)

\(e,Thayx-y=5vàoE,tacó:\\ E=\dfrac{3x-5}{2x+y}-\dfrac{4y+5}{x+3y}\\ =\dfrac{3x-x+y}{2x+y}-\dfrac{4y+x-y}{x+3y}\\ =\dfrac{2x+y}{2x+y}-\dfrac{3y+x}{x+3y}\\ =1-1=0\)

26 tháng 10 2018

Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)

Thay (1) vào P

=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)

=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)

=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)

26 tháng 10 2018

lộn đề .

Thay 2z + 3y + 4z = 2x+ 3y + 4z nha

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)

Ta có: \(E=\dfrac{3x^2+5y^2}{4x^2-y^2}\)

\(=\dfrac{3\cdot\left(2k\right)^2+5\cdot\left(3k\right)^2}{4\cdot\left(2k\right)^2-\left(3k\right)^2}=\dfrac{3\cdot4k^2+5\cdot9k^2}{4\cdot4k^2-9k^2}\)

\(=\dfrac{12k^2+45k^2}{16k^2-9k^2}=\dfrac{57k^2}{7k^2}=\dfrac{57}{7}\)

11 tháng 2 2022

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

11 tháng 4 2022

\(a.3x-5y+1=3.\dfrac{1}{3}-5.\left(-\dfrac{1}{5}\right)+1=1+1+1=3\)

b.x=1

\(\Rightarrow3.1^2-2.1-5=-4\)

x=-1

\(\Rightarrow3.\left(-1\right)^2-2.\left(-1\right)-5=3+2-5=0\)