Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(-x^2+2x-1-3\)
\(=-\left(x-1\right)^2-3\)
Ta thấy : \(\left(x-1\right)^2\ge0\forall x\)
=> \(-\left(x-1\right)^2-3\le-3\forall x\)
Vậy Max = -3 <=> x = 1 .
b, Ta có : \(-x^2-4x-4+4\)
\(=-\left(x+2\right)^2+4\)
Ta thấy : \(\left(x+2\right)^2\ge0\forall x\)
=> \(-\left(x+2\right)^2+4\le4\forall x\)
Vậy Max = 4 <=> x = -2 .
c, Ta có : \(-9x^2+24x-16-2\)
\(=-9\left(x^2-\frac{2.4x}{3}+\frac{16}{9}\right)-2\)
\(=-9\left(x-\frac{4}{3}\right)^2-2\)
Ta thấy : \(\left(x-\frac{4}{3}\right)^2\ge0\forall x\)
=> \(-9\left(x-\frac{4}{3}\right)^2-2\le-2\forall x\)
Vậy Max = -2 <=> x = \(\frac{4}{3}\) .
d, Ta có : \(-x^2+4x-4+3\)
\(=-\left(x-2\right)^2+3\)
Ta thấy : \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2+3\le3\forall x\)
Vậy Max = 3 <=> x = 2 .
e, Ta có : \(-x^2+2x-1-4y^2-4y-1+7\)
\(=-\left(x-1\right)^2-4\left(y^2+y+\frac{1}{4}\right)+7\)
\(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\)
Ta thấy : \(\left\{{}\begin{matrix}\left(x-1\right)^2\\\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\ge0\forall xy\)
=> \(\left\{{}\begin{matrix}-\left(x-1\right)^2\\-4\left(y+\frac{1}{2}\right)^2\end{matrix}\right.\) \(\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2\le0\forall xy\)
=> \(=-\left(x-1\right)^2-4\left(y+\frac{1}{2}\right)^2+7\le7\forall xy\)
Vậy Max = 7 <=> \(\left\{{}\begin{matrix}x=1\\y=-\frac{1}{2}\end{matrix}\right.\)
a) \(4x^2-12x+9\)
\(=\left(2x\right)^2-2.2.3+3^2\)
\(=\left(2x-3\right)^2\)
b) \(4x^2+4x+1\)
\(=\left(2x\right)^2+2.2x.1+1^2\)
\(=\left(2x+1\right)^2\)
c) \(1+12x+36x^2\)
\(=1^2+2.6x+\left(6x\right)^2\)
\(=\left(1+6x\right)^2\)
d) \(9x^2-24xy+16y^2\)
\(=\left(3x\right)^2-2.3x.4y+\left(4y\right)^2\)
\(=\left(3x-4y\right)^2\)
e) Viết = công thức trực quan hộ mình
f) \(-x^2+10x-25\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x^2-2.5x+5^2\right)\)
\(=-\left(x-5\right)^2\)
=>x^2-4x+2y^2-4y+6=0
=>x^2-4x+4+2y^2-4y+2=0
=>(x-2)^2+2(y-1)^2=0
=>x=2 và y=1
Ta có: 4x2 - y2 + 4x + 4y - 3
= (4x2 - 4x + 1) - (y2 - 4y + 4)
= (2x - 1)2 - (y - 2)2
= (2x - 1 -y + 2)(2x - 1 + y - 2)
= (2x - y + 1)(2x + y - 3)
\(4x^2-y^2+4x+4y-3\)
\(=\left(4x^2+4x+1\right)-\left(y^2-4y+4\right)\)
\(=\left(2x+1\right)^2-\left(y-2\right)^2\)
\(=\left(2x+1+y-2\right)\left(2x+1-y+2\right)\)
\(=\left(2x+y-1\right)\left(2x-y+3\right)\)
ax - by + 4x - 4y
= (ax + 4x) - (by + 4y)
= x(a + 4) - y(b + 4)
\(\Leftrightarrow x^3-ax^2-4=\left(x^2+4x+4\right)\cdot a\left(x\right)=\left(x+2\right)^2\cdot a\left(x\right)\)
Thay \(x=-2\Leftrightarrow-8-4a-4=0\Leftrightarrow a=-3\)
\(\Leftrightarrow x^3+4x^2+4x+\left(-4-a\right)x^2-4⋮x^2+4x+4\)
\(\Leftrightarrow-4-a=4+x^2\)
\(\Leftrightarrow a=-4-4-x^2=-x^2-8\)
a.
\(\left(x^2-x+1\right)\left(x^2-x+2\right)=12\)
Đặt \(x^2-x+1=y\) ta được:
\(y\left(y+1\right)=12\)
\(\Leftrightarrow y^2+y-12=0\)
\(\Leftrightarrow y^2+4y-3y-12=0\)
\(\Leftrightarrow\left(y-3\right)\left(y+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=3\\y=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=3\\x^2-x+1=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-x+5=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
b.
\(3y^3-7y^2-7y+3=0\)
\(\Leftrightarrow3\left(y^3+1\right)-7y\left(y+1\right)=0\)
\(\Leftrightarrow3\left(y+1\right)\left(y^2-y+1\right)-7y\left(y+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(3y^2-3y+3-7y\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(3y^2-10y+3\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(3y-1\right)\left(y-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=\dfrac{1}{3}\\y=3\end{matrix}\right.\)