Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-2021\right)\left(x-5\right)-\left(x-2021\right)=0\\ \Leftrightarrow\left(x-2021\right)\left(x-6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2021\\x=6\end{matrix}\right.\)
a A=4x-x^2+3
=(x-2)^2-1
MIN A= -1 khi (x-2)^2=0
x-2=0
x=2
B=x-x^2
B=-x^2+x
-B=x^2-x
-B=(x-1/2)^2-1/4
B=-(x-1/2)^2+1/4
MAX B=1/4 khi -(x-1/2)^2=0
x-1/2=0
x=1/2
N=2x-2x^2-5
-N=2x^2-2x+5
-N=2(x^2-x+2)+1
-N=2{(x-1/2)^2+7/4}+1
-N=2(x-1/2)^2+7/2+1
-N=2(x-1/2)^2+9/2
N=-2(x-1/2)^2-9/2
MAX N=-9/2 khi -2(x-1/2)^2=0
x-1/2=0
x=1/2
\(\left(x^2+1\right)\left(x-2\right)+2x=4\Leftrightarrow x^3-2x^2+x-2+2x-4=0\Leftrightarrow x^3-2x^2+3x-6=0\Leftrightarrow\left(x-2\right)\left(x^2+3\right)=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)(do \(x^2+3\ge3>0\))
\(ĐKXĐ:x\ne2;4\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)+\left(x-2\right)^2=\frac{16}{5}\left(x-2\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x+12+x^2-4x+4=\frac{16}{5}\left(x^2-6x+8\right)\)
\(\Leftrightarrow2x^2-11x+16=\frac{16}{5}x^2-\frac{96}{5}x+\frac{128}{5}\)
\(\Leftrightarrow\frac{6}{5}x^2-\frac{41}{5}x+\frac{48}{5}=0\)
\(\Leftrightarrow6x^2-41x+48=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{16}{3}\\x=\frac{3}{2}\end{cases}}\)
\(2x^2-4x-5=2x^2-4x+2-7=2\left(x-1\right)^2-7\ge0-7=-7\Leftrightarrow x=1\)
\(-2x^2-6x+15=-2x^2-6x-4,5+19,5=-2\left(x+\frac{3}{2}\right)^2+19,5\le0+19,5=19,5\Leftrightarrow x=\frac{-3}{2}\)
Bài 1 : Tìm giá trị lớn nhất, nhỏ nhất
a, \(2x^2-4x-5=2\left(x^2-2x+1\right)-7=2\left(x-1\right)^2-7\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2x^2-4x-5\ge-7\)
\(''=''\Leftrightarrow x=1\)
b, \(-2x^2-6x+15=-2\left(x^2+2x.\frac{3}{2}+\frac{9}{4}\right)+\frac{39}{2}=-2\left(x+\frac{3}{2}\right)^2+\frac{39}{2}\)
Vì \(-2\left(x+\frac{3}{2}\right)^2\le0\Rightarrow-2x^2-6x+15\le\frac{39}{2}\)
\(''=''\Leftrightarrow x=-\frac{3}{2}\)
Bài 2 : Tìm x
a, \(2x^3-3x^2+2=0\) (tạm thời chưa ra)
b, \(x^4-2x^2+1=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\Rightarrow x^2-1=0\Rightarrow x=\pm1\)
a)
Ta có
\(\left(x-1\right)^3-\left(x-1\right)^3-\left(6x-1\right)=-10\)
\(\Leftrightarrow-6x+1=-10\)
\(\Leftrightarrow-6x=-11\)
\(\Leftrightarrow x=\frac{11}{6}\)
Vậy \(x=\frac{11}{6}\)
a) ( x - 1 )3 - ( x - 1 )3 - ( 6x - 1 ) = -10
<=> -( 6x - 1 ) = -10
<=> -6x + 1 = -10
<=> -6x = -11
<=> x = 11/6
b) ( 2x - 1 )2 + ( 2x - 1 )( 2x - 3 ) - ( 2x + 3 )2 + ( 2x + 3 )( -3x ) - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - ( 4x2 + 12x + 9 ) - 6x2 - 9x - 24 = 4
<=> 4x2 - 4x + 1 + 4x2 - 8x + 3 - 4x2 - 12x - 9 - 6x2 - 9x - 24 = 4
<=> -2x2 - 33x - 29 - 4 = 0
<=> -2x2 - 33x - 33 = 0 ( muốn kết quả thì ib còn mình để là vô nghiệm vì nó có nghiệm vô tỉ )
=> Vô nghiệm
Sửa đề: \(\left(x-2\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+\left(2x-3\right)\left(3x-2\right)=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3-8+6x^2-13x+6=0\)
=>-x-10=0
=>x=-10
a: M=2(-2x-3xy^2+1)-3xy^2+1
=-4x-6xy^2+2-3xy^2+1
=-4x-9xy^2+3
b: Thay x=-2 và y=3 vào M, ta được:
M=2*(-2)-3*(-2)*3^2+1
=-4+1+6*9
=54-3
=51
\(\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\left(3x-6\right)x=0\)
\(\Rightarrow\orbr{\begin{cases}3x-6=0\\x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)
Vậy ....
\(\left(2x-3\right)^2-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(2x-3-3+x\right)\left(2x-3+3-x\right)=0\)
\(\Leftrightarrow\left(3x-9\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-9=0\\x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)
vậy nghiệm của pt là x={3;0}