Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) aaaa=a.1111=a.11.101
Để aaaa chỉ có 2 ước là các số nguyên tố (11 và 101 )thì a=1
vậy aaaa=1111
Lời giải:
\(\bullet\)Nếu $p=2$ thì \(10p+1\not\in \mathbb{P}\) (loại)
\(\bullet\) Nếu \(p=3\Rightarrow 10p+1\in\mathbb{P}\). Cùng lúc đó \(5p+1=16\) là hợp số.
\(\bullet\) Nếu \(p>3\Rightarrow p\not\vdots 3\). Xét 2 TH:
TH1: \(p=3k+1\)
Khi đó \(5p+1=5(3k+1)+1=15k+6\vdots 3\) . Mà \(15k+6>3\) nên là hợp số.
TH2: \(p=3k+2\Rightarrow 10p+1=30k+21\vdots 3\), lớn hơn $3$ nên không thể là số nguyên tố (trái với đkđb)
Từ các trường hợp trên, ta có đpcm.
p nguyên tố > 3 => 10p không chia hết cho 3, gt có 10p + 1 không chia hết cho 3
10p, 10p+1, 10p+2 là 3 số nguyên liên tiếp nên phải có 1 số chia hết cho 3
Từ các lí luận trên => 10p+2 = 2(5p+1) chia hết cho 3 (*)
Mà 2 và 3 đều là những số nguêyn tố nên từ (*) => 5p+1 chia hết cho 3
mặt khác p > 3 và nguyên tố nên p là số lẻ => 5p+1 là số chẵn => chia hết cho 2
Vậy 5p+1 chia hết cho 2 và 3 là 2 số nguyên tố cùng nhau
=> 5p + 1 chia hết cho 2.3 = 6
=> 5p + 1 là hợp số