K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1,Cho tam giác ABC vuông tại A với AC = 3cm, BC = 5cm. Vẽ đường cao AK.
Chứng minh rằng: a,∆ ABC ~ ∆ KBA và AB2 = BK.BC
bTính độ dài AK, BK, CK.

c) Phân giác góc BAC cắt BC tại D. Tính đọ dài BD.

2,Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai đường chéo AC và BD.
a) Chứng minh OA.OD = OB.OC ;

b) Cho AB = 5cm, CD = 10cm và AC = 9cm. Hãy tính OA, OC.

3: Giải bài toán bằng cách lập phương trình.
Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính số sản phẩm người đó được giao.
Bài 5: Cho tam giác cân AOB (OA = OB). Đường thẳng qua B và song song với đường cao AH của tam giác AOB cắt tia OA ở E.
1) Chứng minh rằng OA2 = OH.OE ;

2) Cho , OA = 5cm. Hãy tính độ dài OE. 
Bài 6: Hình thang vuông ABCD () có hai đường chéo vuông góc với nhau tại I. 
1) Chứng minh ∆ AIB ~ ∆ DAB.

2) ∆ IAB ~ ∆ ICD.
3) Cho biết AB = 4cm, CD = 9cm. Tính độ dài AD, IA, IC và tỉ số diện tích của ∆ IAB và ∆ ICD.

Bài 7: Cho tam giác ABC có ba đường cao AD, BE, CF giao nhau tại H. Chứng minh rằng:
1) ∆ AEB ~ ∆ AFC. 2) ∆ ABC ~ ∆ AEF 3) HD/AD+HE/HE/BE+HF/CF=1

GIÚP ĐƯỢC CÂU NÀO THI GIÚP MÌNH NHÉ CAMON MỌI NGUOI NHIÊU LẮM

0
Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại FChứng minh tam giác ADE đồng dạng với tam giác BFE2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AKChứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB2 = BK.BC3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E...
Đọc tiếp

Các bạn không cần vẽ hình đâu chỉ cần giải ra thôi

1) Cho hình bình hành ABCD E là điểm trên AB. DE kéo dài cắt đường thẳng BC tại F

Chứng minh tam giác ADE đồng dạng với tam giác BFE

2) Cho tam giác ABC vuông góc tại A với AC bằng 3 cm BC bằng 5cm Vẽ đường cao AK

Chứng minh rằng tam giác ABC đồng dạng với tam giác KBA và AB= BK.BC

3) Cho tam giác ABC có AB = 15cm AC = 20cm BC = 25 cm. Trên cạnh AB lấy điểm E sao cho AE 18cm trên cạnh AC lấy F sao cho AF = 6 cm

So sánh AE/AC;AF/AB

4) Cho tam giác ABC vuông tại A đường cao AH cắt phân giác BD tại I

Chứng minh rằng a,IA.BH = IH.BA

                                b,Tam giác ABC đồng dạng với tam giác HBA

5) cho tam giác AOB có AB bằng 18 cm OA = 12 cm OB = 9cm. Trên tia đối của tia OB lấy điểm D sao cho OD bằng 3 cm. Qua D kẻ đường thẳng song song với AB cắt AO ở C. Gọi F là giao điểm của AD và BC

Tính độ dài OC;CD

6) Cho tam giác nhọn ABC có AB bằng 12 cm AC bằng 15 cm. Trên các cạnh AB và AC lấy các điểm D và E sao cho AD = 4 cm,AE = 5cm

Chứng minh rằng DE // BC, Từ đó suy ra tam giác ADE đồng dạng với tam giác ABC?

7) Cho tam giác ABC vuông tại A D nằm giữa A và C. Kẻ đường thẳng D vuông góc với BC tại E và cắt AB tại F 

Chứng minh tam giác ADF đồng dạng với tam giác EDC

 

1
13 tháng 2 2018

tính đến hết tết à

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

20 tháng 3 2020

Tự vẽ hình.

a) Xét tam giác OAB có AB // CD

⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)

=> OC = 4cm, DC = 6cm

Vậy OC = 4cm và DC = 6cm

b) Xét tam giác FAB có DC // AB

⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )

c) Theo (1), ta đã có:

OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)

Vì MN // AB mà AB // DC => MN // DC

Xét tam giác ADC có MO// DC

⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)

CMTT : ONDC=OBDBONDC=OBDB (4)

Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )

ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D:))))))))Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =4cm. Chứng minh rằng:a) Δ BAD ∼ Δ DBCb) ABCD là hình thangBài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆa)...
Đọc tiếp

ai giúp mình đc không ạ ????????????????iu các bạn nhiều lắm các bạn trả lời đúng nha đừng sai đó :D

:))))))))

Bài 1: Cho hình bên, ABCD là hình thang ( AB//CD ) có AB = 12,5cm; CD =
28,5cm; DABˆ = DBCˆ. Tính độ dài đoạn BD gần nhất bằng bao nhiêu?
Bài 2: Tứ giác ABCD có AB = 2cm; BC = 6cm; CD = 8cm; DA = 3cm và BD =
4cm. Chứng minh rằng:
a) Δ BAD ∼ Δ DBC
b) ABCD là hình thang
Bài 3*: Cho hình vẽ như bên, biết EBAˆ = BDCˆ
a) Trong hình vẽ có bao nhiêu tam giác vuông? Kể tên các tam giác vuông đó.
b) Cho AE = 10cm, AB = 15cm, BC = 12cm. Hãy tính độ dài các đoạn thẳng CD,
BE, BD và ED (làm tròn đến chữ số thập phân thứ nhất)
c) So sánh diện tích tam giác BDE với tổng diện tích hai tam giác AEB và BCD
Bài 4: Trên một cạnh của một góc xOy ( Ox ≠ Oy ) đặt các đoạn thẳng OA = 5cm,
OB = 16cm Trên cạnh thứ hai của góc đó đặt các đoạn thẳng OC = 8cm, OD =
10cm.
a) Chứng minh Δ OCB ∼ Δ OAD
b) Gọi I là giao điểm của các cạnh AD và BC. Chứng minh rằng Δ IAB và Δ ICD
có các góc bằng nhau từng đôi một

1

zồi ôi dài quá

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD

=>OA/OC=OB/OD=AB/CD

=>OA*OD=OB*OC

b: OA/OC=AB/CD

=>OA/6=5/10=1/2

=>OA=3cm

Xet ΔADC có OE//DC

nên OE/DC=AO/AC

=>OE/10=3/(3+6)=3/9=1/3

=>OE=10/3cm

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và...
Đọc tiếp

1. chứng minh răng hình thang có hai đường chéo bằng nhay là hình thang cân.

2. cho hình thang ABCD (AB//CD), biết góc B- góc C= 240 và góc A= 1.5 góc D. Tính các góc của hình thang

3. Cho hình thang ABCD (AB//CD). các tia phân giác của góc A và góc B cắt nhau tại điểm E trên cạnh đáy CD. Chứng minh rằng CD=AD+BC.

4. Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông với BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=5 cm. tính CD

5.Cho hình thang vuông ABCD có góc A= góc D = 900, đường chéo BD vuông góc với cạnh bên BC và BD=BC.

a) tính các góc của hình thang

b) biết AB=3cm. tính độ dài các cạnh BC,CD.

6. Hình thang cân ABCD có AB//CD, AB<CD. Kẻ hai đường cao AH, BK.

a) chứng minh ằng HD=KC.

7. Cho tam giác cân ABC (AB=AC), phân giác BD,CE.

a) tú giác BEDC là hình gì?Vì sao?

b)Chứng minh BE=ED=DC.

c) biết góc A=500. Tính các góc của tứ giác BEDC.

8. cho tam giác đều ABC, hai đường cao BN,CM

a) chứng minh tứ giác BMNC là hình thang cân

b) Tính chu vi của hình thang BMNC là hình thang cân

3
7 tháng 6 2015

dài thế bạn nản luôn oi

7 tháng 6 2015

làm đc câu ào thì đc đâu nhất thiết phải làm hết chỉ là mik đưa mấy bài đóa để mấy bn chỉ đc bài nào thì chỉ thôi mà

11 tháng 5 2018

a)  Xét  \(\Delta OAB\)và   \(\Delta OCD\)có:

      \(\widehat{OAB}=\widehat{OCD}\) (slt)

      \(\widehat{OBA}=\widehat{ODC}\) (slt)

suy ra:   \(\Delta OAB~\Delta OCD\)  (g.g)

\(\Rightarrow\)\(\frac{OA}{OC}=\frac{OB}{OD}\)

\(\Rightarrow\)\(OA.OD=OB.OC\)

b)  \(\Delta OAB~\Delta OCD\)  

\(\Rightarrow\)\(\frac{OA}{AC}=\frac{AB}{CD}\)

\(\Rightarrow\)\(OA=\frac{OC.AB}{CD}=3\)

\(\Rightarrow\)\(AC=OA+OC=9\)

\(\Delta AEO~\Delta ADC\)  ( do OE // DC )

\(\Rightarrow\)\(\frac{OE}{DC}=\frac{OA}{AC}\)  \(\Rightarrow\) \(OE=\frac{OA.DC}{AC}=\frac{10}{3}\)