K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Lời giải:
$16x^4-12x^3=0$

$\Leftrightarrow 4x^3(4x-3)=0$

$\Leftrightarrow x^3=0$ hoặc $4x-3=0$

$\Leftrightarrow x=0$ hoặc $x=\frac{3}{4}$

24 tháng 2 2018

ĐKXĐ:\(x\ne\pm\dfrac{1}{2}\)

\(\dfrac{1+8x}{4+8x}-\dfrac{4x}{12x-6}+\dfrac{32x^2}{3\left(4-16x^2\right)}=0\)

\(\Leftrightarrow\dfrac{1+8x}{4\left(2x+1\right)}-\dfrac{4x}{6\left(2x-1\right)}+\dfrac{32x^2}{-6\cdot\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow\dfrac{6\cdot\left(1+8x\right)\left(2x-1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{4\cdot4x\left(2x+1\right)}{24\left(2x-1\right)\left(2x+1\right)}-\dfrac{32x^2\cdot4}{24\left(2x-1\right)\left(2x+1\right)}=0\)

\(\Leftrightarrow96x^2-36x-6-36x^2-16x-144x^2=0\)

\(\Leftrightarrow-84x^2-52x-6=0\)

\(\Leftrightarrow\Delta=688\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{52-\sqrt{688}}{-168}=\dfrac{-13+\sqrt{43}}{42}\\x_2=\dfrac{52+\sqrt{688}}{-168}=\dfrac{-13-\sqrt{43}}{43}\end{matrix}\right.\)

Vậy pt có 2 nghiệm phân biệt............

17 tháng 4 2020

pt đã cho tương đương với (4x2-x+6)2=0

phần còn lại cậu tự giải đc

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

\(16x^3-12x^2+3x-7=0\)

\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)

\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)

<=> x - 1 = 0 

<=> x = 1

12 tháng 9 2018

\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)

\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)

Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)

\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)

nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Rightarrow x=1\)

30 tháng 10 2016

= 16x-16x+ 4x2 - 4x + 7x - 7

= 16x2(x-1)+4x(x-1)+7(x-1)

=(x-1)(16x2+4x+7)