K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

1.

\(10x=|x+\dfrac{1}{10}|+|x+\dfrac{2}{10}|+...+|x+\dfrac{9}{10}| \ge 0\)

\(\Rightarrow x\ge0\)

\(pt\Leftrightarrow x+\frac{1}{10}+x+\frac{2}{10}+...+x+\frac{9}{10}=10x\)

\(\Leftrightarrow x=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{9}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

7 tháng 10 2020

4.

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{a}{b+3c}=\frac{b}{c+3a}=\frac{c}{a+3b}=\frac{a+b+c}{4\left(a+b+c\right)}=\frac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}4a=b+3c\left(1\right)\\4b=c+3a\left(2\right)\\4c=a+3b\left(3\right)\end{matrix}\right.\)

Từ \(\left(1\right);\left(2\right)\Rightarrow4a=b+3\left(4b-3a\right)\)

\(\Rightarrow12a=12b\Rightarrow a=b\left(4\right)\)

Từ \(\left(1\right);\left(3\right)\Rightarrow4c=a+3\left(4a-3c\right)\)

\(\Rightarrow12a=12c\Rightarrow a=c\left(5\right)\)

Từ \(\left(4\right);\left(5\right)\Rightarrow a=b=c\left(đpcm\right)\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

Ta có: \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{ak\cdot bk\cdot ck\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\cdot\left(ak+bk\right)\cdot\left(bk+ck\right)\cdot\left(ck+ak\right)}\)

\(=\frac{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3\cdot abc\cdot\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy: H=1

20 tháng 8 2020

đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Leftrightarrow\left\{{}\begin{matrix}x=ak\\y=bk\\z=ck\end{matrix}\right.\)

theo giả thiết ta có \(H=\frac{xyz\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

thay \(H=\frac{ak.bk.ck\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left(ak+bk\right)\left(bk+ck\right)\left(ck+ak\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc\left[k\left(a+b\right)\right]\left[k\left(b+c\right)\right]\left[k\left(c+a\right)\right]}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc.k\left(a+b\right).k\left(b+c\right).k\left(c+a\right)}\)

\(\Leftrightarrow H=\frac{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}{k^3abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}=1\)

Vậy H = 1

14 tháng 5 2020

1. 2n-3 ⋮ n+1

⇒2n+2-5 ⋮ n+1

⇒2(n+1)-5 ⋮ n+1

Do n∈Z

⇒n+1 ∈ Ư(-5)={-1,1,-5,5}

\(\left[{}\begin{matrix}n-1=-1\\n-1=1\\n-1=-5\\n-1=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=0\\n=2\\n=-4\\n=6\end{matrix}\right.\)

Vậy x∈{0,2,-4,6}

2. Ta có:

x-y-z=0 ⇒\(\left\{{}\begin{matrix}x=y+z\\y=x-z\\z=x-y\end{matrix}\right.\)

Thay vào biểu thức ta được:

\(B=\left(1-\frac{x-y}{x}\right)\left(1-\frac{y+z}{y}\right)\left(1+\frac{x-z}{z}\right)\)

\(B=\frac{x-x+y}{x}.\frac{y-y-z}{y}.\frac{z+x-z}{z}\)

\(B=\frac{y.\left(-z\right).x}{x.y.z}=\frac{\left(-1\right)xyz}{xyz}=-1\)

Vậy biểu thức B có giá trị là -1

15 tháng 11 2019

b) Ta có:

\(\frac{1}{c}=\frac{1}{2}.\left(\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow\frac{1}{c}.2=\frac{a}{ab}+\frac{b}{ab}\)

\(\Rightarrow\frac{2}{c}=\frac{a+b}{ab}.\)

\(\Rightarrow2ab=\left(a+b\right).c\)

\(\Rightarrow ab+ab=ac+bc\)

\(\Rightarrow ab-bc=ac-ab\)

\(\Rightarrow b.\left(a-c\right)=a.\left(c-b\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right).\)

Chúc bạn học tốt!

27 tháng 11 2019

Bài 2:

c) \(3x-\left|2x+1\right|=2\)

\(\Rightarrow\left|2x+1\right|=3x-2\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=3x-2\\2x+1=2-3x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-3x=\left(-2\right)-1\\2x+3x=2-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=-3\\5x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3:1\\x=1:5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{5}\end{matrix}\right.\)

Vậy \(x\in\left\{3;\frac{1}{5}\right\}.\)

Chúc bạn học tốt!

27 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

15 tháng 2 2017

1) a. Ta có:\(\frac{x+4}{2008}+\frac{x+3}{2009}=\frac{x+2}{2010}+\frac{x+1}{2011}\)

\(\Rightarrow\frac{x+4}{2008}+1+\frac{x+3}{2009}+1=\frac{x+2}{2010}+1+\frac{x+1}{2011}+1\)

\(\Rightarrow\frac{x+4+2008}{2008}+\frac{x+3+2009}{2009}=\frac{x+2+2010}{2010}+\frac{x+1+2011}{2011}\)

\(\Rightarrow\frac{x+2012}{2008}+\frac{x+2012}{2009}=\frac{x+2012}{2010}+\frac{x+2012}{2011}\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)=\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}\right)-\left(x+2012\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=0\)

\(\Rightarrow\left(x+2012\right)\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

\(\Rightarrow x+2012=0\)

\(\Rightarrow x=-2012\)

Bài 2:

a.Ta có: \(\frac{x+2y}{18}=\frac{1+4y}{24}\)

\(\Rightarrow24x+48y=18+72y\)

\(\Rightarrow24x+48y-72y=18\)

\(\Rightarrow24x-24y=18\)

\(\Rightarrow24\left(x-y\right)=18\)

\(\Rightarrow x-y=\frac{3}{4}\)

\(\Rightarrow y=x-\frac{3}{4}\)

thay \(y=x-\frac{3}{4}\)vào \(\frac{1+4y}{24}=\frac{1+x+6y}{6x}\)ta được \(\frac{1+4\times\left(x-\frac{3}{4}\right)}{24}=\frac{1+x+6\times\left(x-\frac{3}{4}\right)}{6x}\)

giải ra ta được x=7

\(\Rightarrow y=7-\frac{3}{4}=\frac{25}{4}\)

b. Đẻ A mang giá trị nuyên

\(\Leftrightarrow9+3n⋮n-4\)

\(\Leftrightarrow3n-12+21⋮n-4\)

\(\Leftrightarrow3\left(n-4\right)+21⋮n-4\)

\(\Leftrightarrow21⋮n-4\)

\(\Leftrightarrow n-4\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bảng sau:


n-4 1 -1 3 -3 7 -7 21

-21

n 5 4 7 1 11 -3 25 -17

Vậy \(n\in\left\{5;4;7;1;11;-3;25;-17\right\}\)thì A là số nguyên.

Thay n vào A và tính giá trị

10 tháng 1 2017

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\left(1\right)\)

*)Xét \(x+y+z\ne0\left(2\right)\). Từ (1) và (2)

\(\Rightarrow x=y=z\). Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=2\cdot2\cdot2=8\)

*)Xét \(x+y+z=0\)\(\Rightarrow\left\{\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

Khi đó \(B=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{x+z}{x}=\frac{-z}{y}\cdot\frac{-x}{z}\cdot\frac{-y}{x}=-1\)

10 tháng 1 2017

a)

Ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow\left\{\begin{matrix}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z-x=x\\z+x-y=y\\x+y-z=z\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y+z=2x\\z+x=2y\\x+y=2z\end{matrix}\right.\) (1)

Ta có \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(\Rightarrow B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thế (1) vào biểu thức B

\(\Rightarrow B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}\)

\(\Rightarrow B=2.2.2=8\)

Vậy biểu thức \(B=8\)