Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right).\left(2x+3\right)}=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+\frac{1}{2}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{2}.\left(\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}\)
\(\Rightarrow\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow\)2x + 3 = 93
\(\Rightarrow\)2x = 93 - 3
\(\Rightarrow\)2x = 90
\(\Rightarrow\)x = 90 : 2 = 45
\(H=\frac{3}{1.5}+\frac{3}{5.9}+\frac{3}{9.13}+...+\frac{3}{33.37}\)
= \(\frac{3}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{33}-\frac{1}{37}\right)\)
= \(\frac{3}{4}\left(1-\frac{1}{37}\right)\)
= \(\frac{3}{4}.\frac{36}{37}=\frac{27}{37}\)
\(\dfrac{4}{1.3}+\dfrac{4}{3.5}+\dfrac{4}{5.7}+...+\dfrac{4}{99.101}\)
\(=2\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\right)\)
\(=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=2\left(1-\dfrac{1}{101}\right)\)
\(=2\cdot\dfrac{100}{101}\)
\(=\dfrac{200}{101}\)
#Sahara |
\(B=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{1}{55}\)
\(B=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{110}\)
\(B=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{10.11}\)
\(B=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{11}\right)=2.\frac{9}{22}=\frac{9}{11}\)
6.B=1.3.6+3.5.6+5.7.6+...+95.97.6+97.99.6
6.B=1.3.(5+1)+3.5.(7-1)+5.7.(9-3)+...+95.97.(99-93)+97.99(101-95)
6.B=1.3.5+1.3+3.5.7-1.3.5+5.7.9-3.5.7+...+95.97.99-93.95.97+97.99.101-95.97.99=1.3+97.99.101
B=(3+97.99.101)/6
\(b,\left(2x+1\right).\left(39-2\right)=-55\)
\(\Rightarrow\left(2x+1\right).37=-55\)
\(\Rightarrow3x+1=-\frac{55}{37}\)
\(\Rightarrow3x=-\frac{92}{37}\)
\(\Rightarrow x=-\frac{92}{111}\)
\(c,\left(x-7\right)\left(x+3\right)< 0\)
\(\Rightarrow\orbr{\begin{cases}x-7>0;x+3< 0\\x-7< 0;x+3>0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>7;x< -3\\x< 7;x>-3\end{cases}}\)
Phép tính trên bằng: \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{x}{6x+9}\)
1/2 ở đâu đấy bạn