K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)

10 tháng 3 2022

\(=\dfrac{49}{50}\)

29 tháng 3 2022

\(1-\dfrac{1}{x+1}=\dfrac{14}{15}\)

\(\dfrac{x+1-1}{x+1}=\dfrac{14}{15}\)

\(\dfrac{x}{x+1}=\dfrac{14}{15}\)

\(15x=14x+14\)

\(x=14\)

6 tháng 2 2023

A=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

A=1/3-1/9

A=2/9

6 tháng 2 2023

các câu 2;3 còn lại giống câu 1 bạn nhé

bạn thay số vào rồi làm tương tự

25 tháng 3 2019

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

25 tháng 3 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}\)

\(=\frac{99}{100}\)

21 tháng 1 2016

\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(S=1-\frac{1}{10}=\frac{9}{10}\)

8 tháng 6 2020

Ta có A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}\)

\(=\frac{19}{20}\)

8 tháng 6 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{19}-\frac{1}{20}\)

\(=\frac{1}{1}-\frac{1}{20}\)

\(=\frac{19}{20}\)

24 tháng 7 2019

Không tìm thấy A=1/1.2 + 1/2.3 + 1/3.4+......+1/2019.2060 trong tài liệu nào.

Ðề xuất:

  • Xin bạn chắc chắn rằng tất cả các từ đều đúng chính tả.
  • Hãy thử những từ khóa khác.
  • Hãy thử những từ khóa chung hơn.
  • Hãy thử bớt từ khóa.

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2019\cdot2020}\)

   \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

    \(=1-\frac{1}{2020}=\frac{2019}{2020}\)

3 tháng 5 2022

\(\text{#}HaimeeOkk\)

\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)

\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)

\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)

\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)

\(A=1-\dfrac{1}{2020}\)

\(A=\dfrac{2019}{2020}\)

Vậy \(A=\dfrac{2019}{2020}\)

1 tháng 5 2016

1/1.2+1/2.3+1/3.4+...+1/99.100

= 1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1-1/100

=100/100-1/100

=99/100

1 tháng 5 2016

Ta có: 1/1.2 + 1/2.3 + 1/3.4 +...+ 1/99.100

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100

= 1 - 1/100

= 99/100

Đúng 100%

21 tháng 4 2015

1/1.2+1/2.3+1/3.4+....+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+.....+1/99-1/100

=1/1-1/100

=99/100

30 tháng 7 2017

1/1.2+1/2.3+1/3.4+...+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1/1-1/100

=100/100-1/100

=99/100

bài này mình mới học qua vài tháng trước thui!!^_^